The theory of screws clarifies many analogies between apparently unrelated notions in mechanics, including the duality between forces and angular velocities. It is known that the real 6-dimensional space of screws can be endowed with an operator E, E^2 = 0, that converts it into a rank 3 free module over the dual numbers. In this paper we prove the converse, namely, given a rank 3 free module over the dual numbers, endowed with orientation and a suitable scalar product (D-module geometry), we show that it is possible to define, in a canonical way, a Euclidean space so that each element of the module is represented by a screw vector field over it. The new approach has the effectiveness of motor calculus while being independent of any reduction point. It gives insights into the transference principle by showing that affine space geometry is basically vector space geometry over the dual numbers. The main results of screw theory are then recovered by using this point of view.

The theory of screws derived from a module over the dual numbers

Minguzzi, Ettore
2024-01-01

Abstract

The theory of screws clarifies many analogies between apparently unrelated notions in mechanics, including the duality between forces and angular velocities. It is known that the real 6-dimensional space of screws can be endowed with an operator E, E^2 = 0, that converts it into a rank 3 free module over the dual numbers. In this paper we prove the converse, namely, given a rank 3 free module over the dual numbers, endowed with orientation and a suitable scalar product (D-module geometry), we show that it is possible to define, in a canonical way, a Euclidean space so that each element of the module is represented by a screw vector field over it. The new approach has the effectiveness of motor calculus while being independent of any reduction point. It gives insights into the transference principle by showing that affine space geometry is basically vector space geometry over the dual numbers. The main results of screw theory are then recovered by using this point of view.
2024
Minguzzi, Ettore
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1270207
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 0
social impact