Deep neural networks for graphs (DNNGs) represent an emerging field that studies how the deep learning method can be generalized to graph-structured data. Since graphs are a powerful and flexible tool to represent complex information in the form of patterns and their relationships, ranging from molecules to protein-to-protein interaction networks, to social or transportation networks, or up to knowledge graphs, potentially modeling systems at very different scales, these methods have been exploited for many application domains.

Guest Editorial: Deep Neural Networks for Graphs: Theory, Models, Algorithms, and Applications

Micheli, Alessio;
2024-01-01

Abstract

Deep neural networks for graphs (DNNGs) represent an emerging field that studies how the deep learning method can be generalized to graph-structured data. Since graphs are a powerful and flexible tool to represent complex information in the form of patterns and their relationships, ranging from molecules to protein-to-protein interaction networks, to social or transportation networks, or up to knowledge graphs, potentially modeling systems at very different scales, these methods have been exploited for many application domains.
2024
Li, Ming; Micheli, Alessio; Wang, Yu Guang; Pan, Shirui; Lió, Pietro; Gnecco, Giorgio Stefano; Sanguineti, Marcello
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1271709
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 37
  • ???jsp.display-item.citation.isi??? 0
social impact