State of Charge estimation is very important to deliver essential information about battery charge and aging level of Li-ion batteries in Electric Vehicles. This paper applies the Deep Leaning and Machine Learning approaches comparing decision tree and Long Short-Term Memory for estimating the State of Charge. The datasets for the training and the evaluation have been generated with a Digital Twin model applying driving cycles at different ambient temperature. The proposed Digital Twin model includes non-linear phenomena.

Machine Learning for SOC Estimation in Li-Ion Batteries

Di Dio R.;Di Rienzo R.;Saletti R.
2024-01-01

Abstract

State of Charge estimation is very important to deliver essential information about battery charge and aging level of Li-ion batteries in Electric Vehicles. This paper applies the Deep Leaning and Machine Learning approaches comparing decision tree and Long Short-Term Memory for estimating the State of Charge. The datasets for the training and the evaluation have been generated with a Digital Twin model applying driving cycles at different ambient temperature. The proposed Digital Twin model includes non-linear phenomena.
2024
Di Dio, R.; Gianluca, A.; Di Rienzo, R.; Saletti, R.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1272527
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact