Autonomous Underwater Vehicles (AUVs) present a low-cost alternative or supplement to existing underwater surveillance networks. The NATO STO Centre for Maritime Research and Experimentation is developing collaborative autonomous behaviours to improve the performance of multi-static networks of AUVs. In this work we lay the foundation to combine a range-dependent acoustic model with a three dimensional measurement model for a linear array within a Bayesian framework. The resulting algorithm is able to provide the vehicles with an estimation of the target depth together with the more usual information based on a planar assumption (i.e. target latitude and longitude). Results are shown through simulations and as obtained from the REP16 sea trial where for the first time a preliminary implementation of the method was deployed in the C-OEX vehicles.
AUV active perception: Exploiting the water column
Munafo Andrea
Primo
Methodology
;
2017-01-01
Abstract
Autonomous Underwater Vehicles (AUVs) present a low-cost alternative or supplement to existing underwater surveillance networks. The NATO STO Centre for Maritime Research and Experimentation is developing collaborative autonomous behaviours to improve the performance of multi-static networks of AUVs. In this work we lay the foundation to combine a range-dependent acoustic model with a three dimensional measurement model for a linear array within a Bayesian framework. The resulting algorithm is able to provide the vehicles with an estimation of the target depth together with the more usual information based on a planar assumption (i.e. target latitude and longitude). Results are shown through simulations and as obtained from the REP16 sea trial where for the first time a preliminary implementation of the method was deployed in the C-OEX vehicles.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


