Parallel computing is very important to accelerate the performance of computing applications. Moreover, parallel applications are expected to continue executing in more dynamic environments and react to changing conditions. In this context, applying self-adaptation is a potential solution to achieve a higher level of autonomic abstractions and runtime responsiveness. In our research, we aim to explore and assess the possible abstractions attainable through the transparent management of parallel executions by self-adaptation. Our primary objectives are to expand the adaptation space to better reflect real-world applications and assess the potential for self-adaptation to enhance efficiency. We provide the following scientific contributions: (I) A conceptual framework to improve the designing of self-adaptation; (II) A new decision-making strategy for applications with multiple parallel stages; (III) A comprehensive evaluation of the proposed decision-making strategy compared to the state-of-the-art. The results demonstrate that the proposed conceptual framework can help design and implement self-adaptive strategies that are more modular and reusable. The proposed decision-making strategy provides significant gains in accuracy compared to the state-of-the-art, increasing the parallel applications' performance and efficiency.

Enhancing self-adaptation for efficient decision-making at run-time in streaming applications on multicores

Adriano Vogel;Marco Danelutto;Massimo Torquati
;
Dalvan Griebler;
2024-01-01

Abstract

Parallel computing is very important to accelerate the performance of computing applications. Moreover, parallel applications are expected to continue executing in more dynamic environments and react to changing conditions. In this context, applying self-adaptation is a potential solution to achieve a higher level of autonomic abstractions and runtime responsiveness. In our research, we aim to explore and assess the possible abstractions attainable through the transparent management of parallel executions by self-adaptation. Our primary objectives are to expand the adaptation space to better reflect real-world applications and assess the potential for self-adaptation to enhance efficiency. We provide the following scientific contributions: (I) A conceptual framework to improve the designing of self-adaptation; (II) A new decision-making strategy for applications with multiple parallel stages; (III) A comprehensive evaluation of the proposed decision-making strategy compared to the state-of-the-art. The results demonstrate that the proposed conceptual framework can help design and implement self-adaptive strategies that are more modular and reusable. The proposed decision-making strategy provides significant gains in accuracy compared to the state-of-the-art, increasing the parallel applications' performance and efficiency.
2024
Vogel, Adriano; Danelutto, Marco; Torquati, Massimo; Griebler, Dalvan; Gustavo Fernandes, Luiz
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1272932
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact