We address a question raised by Ambrosio, Bourgain, Brezis, and Figalli, proving that the $\Gamma$-limit, with respect to the $L^1_{\rm loc}$ topology, of a family of $BMO$-type seminorms is given by $\tfrac14$ times the total variation seminorm. Our method also yields an alternative proof of previously known lower bounds for the pointwise limit and conveys a compactness result in $L^1_{\rm loc}$ in terms of the boundedness of the $BMO$-type seminorms.

Representation of the total variation as a $\Gamma$-limit of BMO-type seminorms

Arroyo-Rabasa Adolfo;Bonicatto Paolo;Del Nin Giacomo
2024-01-01

Abstract

We address a question raised by Ambrosio, Bourgain, Brezis, and Figalli, proving that the $\Gamma$-limit, with respect to the $L^1_{\rm loc}$ topology, of a family of $BMO$-type seminorms is given by $\tfrac14$ times the total variation seminorm. Our method also yields an alternative proof of previously known lower bounds for the pointwise limit and conveys a compactness result in $L^1_{\rm loc}$ in terms of the boundedness of the $BMO$-type seminorms.
2024
ARROYO RABASA, Adolfo; Bonicatto, Paolo; Del Nin, Giacomo
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1273809
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact