We show general lower semicontinuity and relaxation theorems for linear-growth integral functionals defined on vector measures that satisfy linear PDE side constraints (of arbitrary order). These results generalize several known lower semicontinuity and relaxation theorems for BV, BD, and for more general first-order linear PDE side constrains. Our proofs are based on recent progress in the understanding of singularities of measure solutions to linear PDEs and of the generalized convexity notions corresponding to these PDE constraints.
Lower semicontinuity and relaxation of linear-growth integral functionals under PDE constraints
Arroyo-Rabasa Adolfo;
2021-01-01
Abstract
We show general lower semicontinuity and relaxation theorems for linear-growth integral functionals defined on vector measures that satisfy linear PDE side constraints (of arbitrary order). These results generalize several known lower semicontinuity and relaxation theorems for BV, BD, and for more general first-order linear PDE side constrains. Our proofs are based on recent progress in the understanding of singularities of measure solutions to linear PDEs and of the generalized convexity notions corresponding to these PDE constraints.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
[ACV 2021] Lower semicontinuity and relaxation of linear-growth integral functionals under PDE constraints.pdf
non disponibili
Tipologia:
Versione finale editoriale
Licenza:
NON PUBBLICO - accesso privato/ristretto
Dimensione
988.32 kB
Formato
Adobe PDF
|
988.32 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
ARPI_Advances.pdf
accesso aperto
Descrizione: versione finale
Tipologia:
Documento in Post-print
Licenza:
Creative commons
Dimensione
343.07 kB
Formato
Adobe PDF
|
343.07 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.