We show general lower semicontinuity and relaxation theorems for linear-growth integral functionals defined on vector measures that satisfy linear PDE side constraints (of arbitrary order). These results generalize several known lower semicontinuity and relaxation theorems for BV, BD, and for more general first-order linear PDE side constrains. Our proofs are based on recent progress in the understanding of singularities of measure solutions to linear PDEs and of the generalized convexity notions corresponding to these PDE constraints.

Lower semicontinuity and relaxation of linear-growth integral functionals under PDE constraints

Arroyo-Rabasa Adolfo;
2021-01-01

Abstract

We show general lower semicontinuity and relaxation theorems for linear-growth integral functionals defined on vector measures that satisfy linear PDE side constraints (of arbitrary order). These results generalize several known lower semicontinuity and relaxation theorems for BV, BD, and for more general first-order linear PDE side constrains. Our proofs are based on recent progress in the understanding of singularities of measure solutions to linear PDEs and of the generalized convexity notions corresponding to these PDE constraints.
2021
ARROYO RABASA, Adolfo; De Philippis, G.; Rindler, F.
File in questo prodotto:
File Dimensione Formato  
[ACV 2021] Lower semicontinuity and relaxation of linear-growth integral functionals under PDE constraints.pdf

non disponibili

Tipologia: Versione finale editoriale
Licenza: NON PUBBLICO - accesso privato/ristretto
Dimensione 988.32 kB
Formato Adobe PDF
988.32 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
ARPI_Advances.pdf

accesso aperto

Descrizione: versione finale
Tipologia: Documento in Post-print
Licenza: Creative commons
Dimensione 343.07 kB
Formato Adobe PDF
343.07 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1273815
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 22
  • ???jsp.display-item.citation.isi??? 23
social impact