We establish higher integrability estimates for constant-coefficient systems of linear PDEs \[\Acal \mu = \sigma,\] where $\mu \in \Mcal(\Omega;V)$ and $\sigma\in \Mcal(\Omega;W)$ are vector measures and the polar $\frac{\di \mu}{\di |\mu|}$ is uniformly close to a convex cone of $V$ intersecting the wave cone of $\Acal$ only at the origin. More precisely, we prove local compensated compactness estimates of the form \[\|\mu\|_{\Lrm^p(\Omega')} \lesssim |\mu|(\Omega) + |\sigma|(\Omega), \qquad \Omega' \Subset \Omega.\] Here, the exponent $p$ belongs to the (optimal) range $1 \leq p < d/(d-k)$, $d$ is the dimension of $\Omega$, and $k$ is the order of $\Acal$. We also obtain the limiting case $p = d/(d-k)$ for canceling constant-rank operators. We consider applications to compensated compactness and {applications to the theory of} functions of bounded variation and bounded deformation.

Higher integrability for measures satisfying a PDE constraint

Arroyo-Rabasa, Adolfo;
2024-01-01

Abstract

We establish higher integrability estimates for constant-coefficient systems of linear PDEs \[\Acal \mu = \sigma,\] where $\mu \in \Mcal(\Omega;V)$ and $\sigma\in \Mcal(\Omega;W)$ are vector measures and the polar $\frac{\di \mu}{\di |\mu|}$ is uniformly close to a convex cone of $V$ intersecting the wave cone of $\Acal$ only at the origin. More precisely, we prove local compensated compactness estimates of the form \[\|\mu\|_{\Lrm^p(\Omega')} \lesssim |\mu|(\Omega) + |\sigma|(\Omega), \qquad \Omega' \Subset \Omega.\] Here, the exponent $p$ belongs to the (optimal) range $1 \leq p < d/(d-k)$, $d$ is the dimension of $\Omega$, and $k$ is the order of $\Acal$. We also obtain the limiting case $p = d/(d-k)$ for canceling constant-rank operators. We consider applications to compensated compactness and {applications to the theory of} functions of bounded variation and bounded deformation.
2024
Arroyo-Rabasa, Adolfo; De Philippis, Guido; Hirsch, Jonas; Rindler, Filip; Skorobogatova, Anna
File in questo prodotto:
File Dimensione Formato  
tran9189.pdf

non disponibili

Tipologia: Versione finale editoriale
Licenza: NON PUBBLICO - accesso privato/ristretto
Dimensione 405.64 kB
Formato Adobe PDF
405.64 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
ARPI version.pdf

accesso aperto

Descrizione: versione finale
Tipologia: Documento in Post-print
Licenza: Creative commons
Dimensione 488.18 kB
Formato Adobe PDF
488.18 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1273818
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact