We establish a non-local integral difference quotient representation for symmetric gradient semi-norms in BD(Omega) and LD(Omega), which does not require the manipulation of distributional derivatives. Our representation extends the formulas for the symmetric gradient established by Mengesha for vector-fields in W-1,W-p (Omega; R-d), which are inspired by the gradient semi-norm formulas introduced by Bourgain, Brezis and Mironescu in W-1,W-p (Omega) and by Davila in BV (Omega).

A Bourgain-Brezis-Mironescu representation for functions with bounded deformation

Arroyo-Rabasa, Adolfo;
2023-01-01

Abstract

We establish a non-local integral difference quotient representation for symmetric gradient semi-norms in BD(Omega) and LD(Omega), which does not require the manipulation of distributional derivatives. Our representation extends the formulas for the symmetric gradient established by Mengesha for vector-fields in W-1,W-p (Omega; R-d), which are inspired by the gradient semi-norm formulas introduced by Bourgain, Brezis and Mironescu in W-1,W-p (Omega) and by Davila in BV (Omega).
2023
Arroyo-Rabasa, Adolfo; Bonicatto, Paolo
File in questo prodotto:
File Dimensione Formato  
s00526-022-02350-0.pdf

non disponibili

Descrizione: Versione editoriale finale
Tipologia: Versione finale editoriale
Licenza: NON PUBBLICO - accesso privato/ristretto
Dimensione 383.46 kB
Formato Adobe PDF
383.46 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
ARPI version.pdf

accesso aperto

Descrizione: versione finale
Tipologia: Documento in Post-print
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 400.64 kB
Formato Adobe PDF
400.64 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1273820
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
social impact