We establish a non-local integral difference quotient representation for symmetric gradient semi-norms in BD(Omega) and LD(Omega), which does not require the manipulation of distributional derivatives. Our representation extends the formulas for the symmetric gradient established by Mengesha for vector-fields in W-1,W-p (Omega; R-d), which are inspired by the gradient semi-norm formulas introduced by Bourgain, Brezis and Mironescu in W-1,W-p (Omega) and by Davila in BV (Omega).
A Bourgain-Brezis-Mironescu representation for functions with bounded deformation
Arroyo-Rabasa, Adolfo;
2023-01-01
Abstract
We establish a non-local integral difference quotient representation for symmetric gradient semi-norms in BD(Omega) and LD(Omega), which does not require the manipulation of distributional derivatives. Our representation extends the formulas for the symmetric gradient established by Mengesha for vector-fields in W-1,W-p (Omega; R-d), which are inspired by the gradient semi-norm formulas introduced by Bourgain, Brezis and Mironescu in W-1,W-p (Omega) and by Davila in BV (Omega).File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
s00526-022-02350-0.pdf
non disponibili
Descrizione: Versione editoriale finale
Tipologia:
Versione finale editoriale
Licenza:
NON PUBBLICO - accesso privato/ristretto
Dimensione
383.46 kB
Formato
Adobe PDF
|
383.46 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
ARPI version.pdf
accesso aperto
Descrizione: versione finale
Tipologia:
Documento in Post-print
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
400.64 kB
Formato
Adobe PDF
|
400.64 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.