Thermoelectric effects in metals are typically small due to the nearly perfect particle-hole symmetry around their Fermi surface. Furthermore, thermo-phase effects and linear thermoelectricity in superconducting systems have been identified only when particle-hole symmetry is explicitly broken, since thermoelectric effects were considered impossible in pristine superconductors. Here, we experimentally demonstrate that superconducting tunnel junctions develop a very large bipolar thermoelectricity in the presence of a sizable thermal gradient thanks to spontaneous particle-hole symmetry breaking. Our junctions show Seebeck coefficients of up to +/- 300 mu V K-1, which is comparable with quantum dots and roughly 10(5) times larger than the value expected for normal metals at subkelvin temperatures. Moreover, by integrating our junctions into a Josephson interferometer, we realize a bipolar thermoelectric Josephson engine generating phase-tunable electric powers of up to similar to 140 nW mm(-2). Notably, our device implements also the prototype for a persistent thermoelectric memory cell, written or erased by current injection. We expect that our findings will lead to applications in superconducting quantum technologies.
Bipolar thermoelectric Josephson engine
Gaia Germanese;Federico Paolucci
;Giampiero Marchegiani;
2022-01-01
Abstract
Thermoelectric effects in metals are typically small due to the nearly perfect particle-hole symmetry around their Fermi surface. Furthermore, thermo-phase effects and linear thermoelectricity in superconducting systems have been identified only when particle-hole symmetry is explicitly broken, since thermoelectric effects were considered impossible in pristine superconductors. Here, we experimentally demonstrate that superconducting tunnel junctions develop a very large bipolar thermoelectricity in the presence of a sizable thermal gradient thanks to spontaneous particle-hole symmetry breaking. Our junctions show Seebeck coefficients of up to +/- 300 mu V K-1, which is comparable with quantum dots and roughly 10(5) times larger than the value expected for normal metals at subkelvin temperatures. Moreover, by integrating our junctions into a Josephson interferometer, we realize a bipolar thermoelectric Josephson engine generating phase-tunable electric powers of up to similar to 140 nW mm(-2). Notably, our device implements also the prototype for a persistent thermoelectric memory cell, written or erased by current injection. We expect that our findings will lead to applications in superconducting quantum technologies.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.