Superconductors are excellent thermal insulators at low temperatures owing to the presence of an energy gap in their density of states1. Through the so-called proximity effect2, superconductors can influence the density of states of nearby metallic or superconducting wires. In this way, the local density of states of a wire can be tuned by controlling the phase bias (φ) imposed across it3. Here we demonstrate a thermal superconducting quantum interference proximity transistor (T-SQUIPT) that enables the phase control of heat currents by exploiting the superconducting proximity effect. Our T-SQUIPT device comprises a quasi-one-dimensional aluminium nanowire forming the weak link embedded in a superconducting ring4,5. Controlling the phase bias by changing the magnetic flux through the ring shows temperature modulations of up to 16 mK, yielding a temperature-to-flux transfer function that reaches approximately 60 mK Φ0–1. We also demonstrate a hysteretic dependence of the local density of states of T-SQUIPTs on the applied magnetic field due to phase-slip transitions. This allows the T-SQUIPT device to operate as a phase-tunable thermal memory6,7, where the information is encoded in the temperature of the metallic mesoscopic island.

Thermal superconducting quantum interference proximity transistor

Paolucci F.;Strambini E.;
2022-01-01

Abstract

Superconductors are excellent thermal insulators at low temperatures owing to the presence of an energy gap in their density of states1. Through the so-called proximity effect2, superconductors can influence the density of states of nearby metallic or superconducting wires. In this way, the local density of states of a wire can be tuned by controlling the phase bias (φ) imposed across it3. Here we demonstrate a thermal superconducting quantum interference proximity transistor (T-SQUIPT) that enables the phase control of heat currents by exploiting the superconducting proximity effect. Our T-SQUIPT device comprises a quasi-one-dimensional aluminium nanowire forming the weak link embedded in a superconducting ring4,5. Controlling the phase bias by changing the magnetic flux through the ring shows temperature modulations of up to 16 mK, yielding a temperature-to-flux transfer function that reaches approximately 60 mK Φ0–1. We also demonstrate a hysteretic dependence of the local density of states of T-SQUIPTs on the applied magnetic field due to phase-slip transitions. This allows the T-SQUIPT device to operate as a phase-tunable thermal memory6,7, where the information is encoded in the temperature of the metallic mesoscopic island.
2022
Ligato, N.; Paolucci, F.; Strambini, E.; Giazotto, F.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1273965
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 12
  • ???jsp.display-item.citation.isi??? 12
social impact