We compute the Chow rings with integral coefficients of moduli stacks of minimal Weierstrass fibrations over the projective line. For each integer N ≥ 1, there is a moduli stack Wmin N parametrizing minimal Weierstrass fibrations with fundamental invariant N. Following work of Miranda and Park-Schmitt, we give a quotient stack presentation for each Wmin N . Using these presentations and equivariant intersection theory, we determine a complete set of generators and relations for each of the Chow rings. For the cases N = 1 (respectively, N = 2), parametrizing rational (respectively, K3) elliptic surfaces, we give a more explicit computation of the relations.

The integral Chow rings of moduli of Weierstrass fibrations

Di Lorenzo A.;
2024-01-01

Abstract

We compute the Chow rings with integral coefficients of moduli stacks of minimal Weierstrass fibrations over the projective line. For each integer N ≥ 1, there is a moduli stack Wmin N parametrizing minimal Weierstrass fibrations with fundamental invariant N. Following work of Miranda and Park-Schmitt, we give a quotient stack presentation for each Wmin N . Using these presentations and equivariant intersection theory, we determine a complete set of generators and relations for each of the Chow rings. For the cases N = 1 (respectively, N = 2), parametrizing rational (respectively, K3) elliptic surfaces, we give a more explicit computation of the relations.
2024
Canning, S.; Di Lorenzo, A.; Inchiostro, G.
File in questo prodotto:
File Dimensione Formato  
transactions_paper.pdf

non disponibili

Tipologia: Versione finale editoriale
Licenza: NON PUBBLICO - accesso privato/ristretto
Dimensione 415.1 kB
Formato Adobe PDF
415.1 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Weierstrass.pdf

accesso aperto

Tipologia: Documento in Post-print
Licenza: Creative commons
Dimensione 449.9 kB
Formato Adobe PDF
449.9 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1274550
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact