We compute the Chow rings with integral coefficients of moduli stacks of minimal Weierstrass fibrations over the projective line. For each integer N ≥ 1, there is a moduli stack Wmin N parametrizing minimal Weierstrass fibrations with fundamental invariant N. Following work of Miranda and Park-Schmitt, we give a quotient stack presentation for each Wmin N . Using these presentations and equivariant intersection theory, we determine a complete set of generators and relations for each of the Chow rings. For the cases N = 1 (respectively, N = 2), parametrizing rational (respectively, K3) elliptic surfaces, we give a more explicit computation of the relations.
The integral Chow rings of moduli of Weierstrass fibrations
Di Lorenzo A.;
2024-01-01
Abstract
We compute the Chow rings with integral coefficients of moduli stacks of minimal Weierstrass fibrations over the projective line. For each integer N ≥ 1, there is a moduli stack Wmin N parametrizing minimal Weierstrass fibrations with fundamental invariant N. Following work of Miranda and Park-Schmitt, we give a quotient stack presentation for each Wmin N . Using these presentations and equivariant intersection theory, we determine a complete set of generators and relations for each of the Chow rings. For the cases N = 1 (respectively, N = 2), parametrizing rational (respectively, K3) elliptic surfaces, we give a more explicit computation of the relations.File | Dimensione | Formato | |
---|---|---|---|
transactions_paper.pdf
non disponibili
Tipologia:
Versione finale editoriale
Licenza:
NON PUBBLICO - accesso privato/ristretto
Dimensione
415.1 kB
Formato
Adobe PDF
|
415.1 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Weierstrass.pdf
accesso aperto
Tipologia:
Documento in Post-print
Licenza:
Creative commons
Dimensione
449.9 kB
Formato
Adobe PDF
|
449.9 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.