For the solution of linear ill-posed problems, in this paper we introduce a simple algorithm for the choice of the regularization parameters when performing multi-parameter Tikhonov regularization through an iterative scheme. More specifically, the new technique is based on the use of the Arnoldi-Tikhonov method and the discrepancy principle. Numerical experiments arising from the discretization of integral equations are presented.

Multi-parameter Arnoldi-Tikhonov methods

GAZZOLA, SILVIA;
2013-01-01

Abstract

For the solution of linear ill-posed problems, in this paper we introduce a simple algorithm for the choice of the regularization parameters when performing multi-parameter Tikhonov regularization through an iterative scheme. More specifically, the new technique is based on the use of the Arnoldi-Tikhonov method and the discrepancy principle. Numerical experiments arising from the discretization of integral equations are presented.
2013
Gazzola, Silvia; Novati, Paolo
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1274832
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 17
  • ???jsp.display-item.citation.isi??? 17
social impact