In the framework of iterative regularization techniques for large-scale linear ill-posed problems, this paper introduces a novel algorithm for the choice of the regularization parameter when performing the Arnoldi–Tikhonov method. Assuming that we can apply the discrepancy principle, this new strategy can work without restrictions on the choice of the regularization matrix. Moreover, this method is also employed as a procedure to detect the noise level whenever it is just overestimated. Numerical experiments arising from the discretization of integral equations and image restoration are presented.

Automatic parameter setting for Arnoldi–Tikhonov methods

GAZZOLA, SILVIA;
2014-01-01

Abstract

In the framework of iterative regularization techniques for large-scale linear ill-posed problems, this paper introduces a novel algorithm for the choice of the regularization parameter when performing the Arnoldi–Tikhonov method. Assuming that we can apply the discrepancy principle, this new strategy can work without restrictions on the choice of the regularization matrix. Moreover, this method is also employed as a procedure to detect the noise level whenever it is just overestimated. Numerical experiments arising from the discretization of integral equations and image restoration are presented.
2014
Gazzola, Silvia; Novati, Paolo
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1274834
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 27
  • ???jsp.display-item.citation.isi??? 26
social impact