This paper introduces two new algorithms, belonging to the class of Arnoldi--Tikhonov regularization methods, which are particularly appropriate for sparse reconstruction. The main idea is to consider suitable adaptively defined regularization matrices that allow the usual 2-norm regularization term to approximate a more general regularization term expressed in the $p$-norm, $p\geq 1$. The regularization matrix can be updated both at each step and after some iterations have been performed, leading to two different approaches: the first one is based on the idea of the iteratively reweighted least squares method and can be obtained considering flexible Krylov subspaces; the second one is based on restarting the Arnoldi algorithm. Numerical examples are given in order to show the effectiveness of these new methods, and comparisons with some other already existing algorithms are made.

Generalized Arnoldi--Tikhonov Method for Sparse Reconstruction

GAZZOLA, SILVIA;
2014-01-01

Abstract

This paper introduces two new algorithms, belonging to the class of Arnoldi--Tikhonov regularization methods, which are particularly appropriate for sparse reconstruction. The main idea is to consider suitable adaptively defined regularization matrices that allow the usual 2-norm regularization term to approximate a more general regularization term expressed in the $p$-norm, $p\geq 1$. The regularization matrix can be updated both at each step and after some iterations have been performed, leading to two different approaches: the first one is based on the idea of the iteratively reweighted least squares method and can be obtained considering flexible Krylov subspaces; the second one is based on restarting the Arnoldi algorithm. Numerical examples are given in order to show the effectiveness of these new methods, and comparisons with some other already existing algorithms are made.
2014
Gazzola, Silvia; James G., Nagy
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1274846
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 51
  • ???jsp.display-item.citation.isi??? 47
social impact