In microfluidic systems, droplets undergo intricate deformations as they traverse flow-focusing junctions, posing a challenging task for accurate measurement, especially during short transit times. This study investigates the physical behavior of droplets within dense emulsions in diverse microchannel geometries, specifically focusing on the impact of varying opening angles within the primary channel and injection rates of fluid components. Employing a sophisticated droplet tracking tool based on deep-learning techniques, we analyze multiple frames from flow-focusing experiments to quantitatively characterize droplet deformation in terms of ratio between maximum width and height and propensity to form liquid with hexagonal spatial arrangement. Our findings reveal the existence of an optimal opening angle where shape deformations are minimal and hexagonal arrangement is maximal. Variations of fluid injection rates are also found to affect size and packing fraction of the emulsion in the exit channel. This paper offers insight into deformations, size, and structure of fluid emulsions relative to microchannel geometry and other flow-related parameters captured through machine learning, with potential implications for the design of microchips utilized in cellular transport and tissue engineering applications.

Measuring arrangement and size distributions of flowing droplets in microchannels through deep learning using DropTrack

Dario Pisignano;
2024-01-01

Abstract

In microfluidic systems, droplets undergo intricate deformations as they traverse flow-focusing junctions, posing a challenging task for accurate measurement, especially during short transit times. This study investigates the physical behavior of droplets within dense emulsions in diverse microchannel geometries, specifically focusing on the impact of varying opening angles within the primary channel and injection rates of fluid components. Employing a sophisticated droplet tracking tool based on deep-learning techniques, we analyze multiple frames from flow-focusing experiments to quantitatively characterize droplet deformation in terms of ratio between maximum width and height and propensity to form liquid with hexagonal spatial arrangement. Our findings reveal the existence of an optimal opening angle where shape deformations are minimal and hexagonal arrangement is maximal. Variations of fluid injection rates are also found to affect size and packing fraction of the emulsion in the exit channel. This paper offers insight into deformations, size, and structure of fluid emulsions relative to microchannel geometry and other flow-related parameters captured through machine learning, with potential implications for the design of microchips utilized in cellular transport and tissue engineering applications.
2024
Durve, Mihir; Orsini, Sibilla; Tiribocchi, Adriano; Montessori, Andrea; Tucny, Jean-Michel; Lauricella, Marco; Camposeo, Andrea; Pisignano, Dario; Suc...espandi
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1275989
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact