We introduce a two-step, fully reversible process designed to project the outer shape of a generic droplet onto a lower-dimensional space. The initial step involves representing the droplet's shape as a Fourier series. Subsequently, the Fourier coefficients are reduced to lower-dimensional vectors by using autoencoder models. The exploitation of the domain knowledge of the droplet shapes allows us to map generic droplet shapes to just two-dimensional (2D) space in contrast to previous direct methods involving autoencoders that could map it on minimum eight-dimensional (8D) space. This six-dimensional (6D) reduction in the dimensionality of the droplet's description opens new possibilities for applications, such as automated droplet generation via reinforcement learning, the analysis of droplet shape evolution dynamics, and the prediction of droplet breakup. Our findings underscore the benefits of incorporating domain knowledge into autoencoder models, highlighting the potential for increased accuracy in various other scientific disciplines.
Minimal droplet shape representation in experimental microfluidics using Fourier series and autoencoders
Pisignano D.;
2024-01-01
Abstract
We introduce a two-step, fully reversible process designed to project the outer shape of a generic droplet onto a lower-dimensional space. The initial step involves representing the droplet's shape as a Fourier series. Subsequently, the Fourier coefficients are reduced to lower-dimensional vectors by using autoencoder models. The exploitation of the domain knowledge of the droplet shapes allows us to map generic droplet shapes to just two-dimensional (2D) space in contrast to previous direct methods involving autoencoders that could map it on minimum eight-dimensional (8D) space. This six-dimensional (6D) reduction in the dimensionality of the droplet's description opens new possibilities for applications, such as automated droplet generation via reinforcement learning, the analysis of droplet shape evolution dynamics, and the prediction of droplet breakup. Our findings underscore the benefits of incorporating domain knowledge into autoencoder models, highlighting the potential for increased accuracy in various other scientific disciplines.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.