Industry 4.0 has led to a huge increase in data coming from machine maintenance. At the same time, advances in Natural Language Processing (NLP) and Large Language Models provide new ways to analyse this data. In our research, we use NLP to analyse maintenance work orders, and specifically the descriptions of failures and the corresponding repair actions. Many NLP studies have focused on failure descriptions for categorising them, extracting specific information about failure, or supporting failure analysis methodologies (such as FMEA). Whereas, the analysis of repair actions and its relationship with failure remains underexplored. Addressing this gap, our study makes three significant contributions. Firstly, we focused on the Italian language, which presents additional challenges due to the dominance of NLP systems that are mainly designed for English. Secondly, it proposes a method for automatically subdividing a repair action into a set of sub-tasks. Lastly, it introduces an approach that employs association rule mining to recommend sub-tasks to maintainers when addressing failures. We tested our approach with a case study from an automotive company in Italy. The case study provides insights into the current barriers faced by NLP applications in maintenance, offering a glimpse into the future opportunities for smart maintenance systems.
Decomposing maintenance actions into sub-tasks using natural language processing: A case study in an Italian automotive company
Giordano, Vito
;Fantoni, Gualtiero
2025-01-01
Abstract
Industry 4.0 has led to a huge increase in data coming from machine maintenance. At the same time, advances in Natural Language Processing (NLP) and Large Language Models provide new ways to analyse this data. In our research, we use NLP to analyse maintenance work orders, and specifically the descriptions of failures and the corresponding repair actions. Many NLP studies have focused on failure descriptions for categorising them, extracting specific information about failure, or supporting failure analysis methodologies (such as FMEA). Whereas, the analysis of repair actions and its relationship with failure remains underexplored. Addressing this gap, our study makes three significant contributions. Firstly, we focused on the Italian language, which presents additional challenges due to the dominance of NLP systems that are mainly designed for English. Secondly, it proposes a method for automatically subdividing a repair action into a set of sub-tasks. Lastly, it introduces an approach that employs association rule mining to recommend sub-tasks to maintainers when addressing failures. We tested our approach with a case study from an automotive company in Italy. The case study provides insights into the current barriers faced by NLP applications in maintenance, offering a glimpse into the future opportunities for smart maintenance systems.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.