• Background The evolutionary success of flowering plants is associated with the vast diversity of their reproductive structures. Despite recent progress in understanding angiosperm-wide trends in floral structure and evolution, a synthetic view of the diversity in seed form and function across angiosperms is lacking. • Scope Here we present a roadmap to synthesize the diversity of seed forms in extant angiosperms, relying on the morphospace concept, i.e. a mathematical representation which relates multiple traits and describes the realized morphologies. We provide recommendations on how to broaden the range of measurable traits beyond mass, by using key morphological traits representative of the embryo, endosperm and seed coat but also fruit attributes (e.g. dehiscence, fleshiness). These key traits were used to construct and analyse a morphospace to detect evolutionary trends and gain insight into how morphological traits relate to seed functions. Finally, we outline challenges and future research directions, combining the morphospace with macroevolutionary comparative methods to underline the drivers that gave rise to the diversity of observed seed forms. • Conclusions We conclude that this multidimensional approach has the potential, although still untapped, to improve our understanding of covariation among reproductive traits, and further elucidate angiosperm reproductive biology as a whole.

The seed morphospace, a new contribution towards the multidimensional study of angiosperm sexual reproductive biology

Angelino Carta
Primo
Conceptualization
;
2024-01-01

Abstract

• Background The evolutionary success of flowering plants is associated with the vast diversity of their reproductive structures. Despite recent progress in understanding angiosperm-wide trends in floral structure and evolution, a synthetic view of the diversity in seed form and function across angiosperms is lacking. • Scope Here we present a roadmap to synthesize the diversity of seed forms in extant angiosperms, relying on the morphospace concept, i.e. a mathematical representation which relates multiple traits and describes the realized morphologies. We provide recommendations on how to broaden the range of measurable traits beyond mass, by using key morphological traits representative of the embryo, endosperm and seed coat but also fruit attributes (e.g. dehiscence, fleshiness). These key traits were used to construct and analyse a morphospace to detect evolutionary trends and gain insight into how morphological traits relate to seed functions. Finally, we outline challenges and future research directions, combining the morphospace with macroevolutionary comparative methods to underline the drivers that gave rise to the diversity of observed seed forms. • Conclusions We conclude that this multidimensional approach has the potential, although still untapped, to improve our understanding of covariation among reproductive traits, and further elucidate angiosperm reproductive biology as a whole.
2024
Carta, Angelino; Vandelook, Filip; Ramírez-Barahona, Santiago; Chen, Si-Chong; Dickie, John; Steinbrecher, Tina; A Thanos, Costas; T Moles, Angela; Le...espandi
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1278050
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 1
social impact