The Dorsal Raphe (DR) is the primary source of serotonergic input in the brain and a center for the homeostatic maintenance of the serotonergic tone. Under repeated stimulation, it can undergo adaptive modifications that alter serotonergic neurotransmission, which can lead to behavioral dysfunction. Post-transcriptional regulation by microRNAs is implicated in these adaptations. However, a global microRNA/target network effect on the DR neuroplasticity has yet to be elucidated. Here we investigate the microRNAs/mRNAs regulatory activity in the mouse DR after a chronic stress experience. First, we assessed the behavioral consequences of repeated restraint stress exposure and the functional adaptations of the DR by measuring the change in acute stress-induced serotonin release. Then, through next generation RNA-Seq of Argonaute2-bound RNA (RISC-Seq) we identified microRNAs and their targets that are associated to the RISC complex of the DR in unstressed and stressed mice. We mapped the potential microRNA/mRNA network within the stress-altered transcripts, uncovering new interactions that contribute to the chronic stress-induced DR modifications.
RISC RNA sequencing in the Dorsal Raphè reveals microRNAs regulatory activities associated with behavioral and functional adaptations to chronic stress
Lo Iacono L.
2020-01-01
Abstract
The Dorsal Raphe (DR) is the primary source of serotonergic input in the brain and a center for the homeostatic maintenance of the serotonergic tone. Under repeated stimulation, it can undergo adaptive modifications that alter serotonergic neurotransmission, which can lead to behavioral dysfunction. Post-transcriptional regulation by microRNAs is implicated in these adaptations. However, a global microRNA/target network effect on the DR neuroplasticity has yet to be elucidated. Here we investigate the microRNAs/mRNAs regulatory activity in the mouse DR after a chronic stress experience. First, we assessed the behavioral consequences of repeated restraint stress exposure and the functional adaptations of the DR by measuring the change in acute stress-induced serotonin release. Then, through next generation RNA-Seq of Argonaute2-bound RNA (RISC-Seq) we identified microRNAs and their targets that are associated to the RISC complex of the DR in unstressed and stressed mice. We mapped the potential microRNA/mRNA network within the stress-altered transcripts, uncovering new interactions that contribute to the chronic stress-induced DR modifications.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.