High Latitude fjords can serve as sediment trap, bearing different type of proxies, from geochemical to micropaleontological ones, making them exceptional tools for paleoenvironmental reconstruction. However, some unconventional proxies can be present and can be used to depict a comprehensive and exhaustive interpretation of past changes. Here, studying a sediment core in Edisto Inlet (Ross Sea, Antarctica) we used irregular echinoid spines and ophiuroids (Ophionotus victoriae) ossicles to trace environmental changes throughout the last 3.6 kyrs BP. Irregular echinoids can serve as proxy for the organic matter content, while O. victoriae ossicles can be used as proxy for steady sea-ice cycle along with organic deposition events. O. victoriae release a high number of ossicles, making estimation about the population quite challenging; still, presence data, can be easily collected. By applying Generative Additive Models to the stratigraphical distribution of these data, we detected an environmental phase that was previously unnoticed by other traditional proxies: the Ophiuroid Optimum (2-1.5 kyrs BP). In conclusion, here we demonstrate how echinoderm presence can be used as a valuable source of information, while proving the potential of modelling binary data to detect long-term trend in Holocene stratigraphical records.

Late Holocene echinoderm assemblages can serve as paleoenvironmental tracers in an Antarctic fjord

Morigi C.
Secondo
;
Gariboldi K.
Ultimo
2024-01-01

Abstract

High Latitude fjords can serve as sediment trap, bearing different type of proxies, from geochemical to micropaleontological ones, making them exceptional tools for paleoenvironmental reconstruction. However, some unconventional proxies can be present and can be used to depict a comprehensive and exhaustive interpretation of past changes. Here, studying a sediment core in Edisto Inlet (Ross Sea, Antarctica) we used irregular echinoid spines and ophiuroids (Ophionotus victoriae) ossicles to trace environmental changes throughout the last 3.6 kyrs BP. Irregular echinoids can serve as proxy for the organic matter content, while O. victoriae ossicles can be used as proxy for steady sea-ice cycle along with organic deposition events. O. victoriae release a high number of ossicles, making estimation about the population quite challenging; still, presence data, can be easily collected. By applying Generative Additive Models to the stratigraphical distribution of these data, we detected an environmental phase that was previously unnoticed by other traditional proxies: the Ophiuroid Optimum (2-1.5 kyrs BP). In conclusion, here we demonstrate how echinoderm presence can be used as a valuable source of information, while proving the potential of modelling binary data to detect long-term trend in Holocene stratigraphical records.
2024
Galli, G.; Morigi, C.; Thuy, B.; Gariboldi, K.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1281367
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact