We consider a system of N point vortices in a bounded domain with null total circulation, whose statistics are given by the canonical Gibbs ensemble at inverse temperature β≥0. We prove that the space-time fluctuation field around the (constant) mean field limit satisfies when N→∞ a generalized version of two-dimensional Euler dynamics preserving the Gaussian energy-enstrophy ensemble.

Gibbs equilibrium fluctuations of point vortex dynamics

Grotto, Francesco;Romito, Marco
2024-01-01

Abstract

We consider a system of N point vortices in a bounded domain with null total circulation, whose statistics are given by the canonical Gibbs ensemble at inverse temperature β≥0. We prove that the space-time fluctuation field around the (constant) mean field limit satisfies when N→∞ a generalized version of two-dimensional Euler dynamics preserving the Gaussian energy-enstrophy ensemble.
2024
Grotto, Francesco; Luongo, Eliseo; Romito, Marco
File in questo prodotto:
File Dimensione Formato  
AAP2095.pdf

non disponibili

Tipologia: Versione finale editoriale
Licenza: NON PUBBLICO - accesso privato/ristretto
Dimensione 445.93 kB
Formato Adobe PDF
445.93 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Gibbs_Invariant_Measures_2d_Euler (1).pdf

accesso aperto

Descrizione: post-print
Tipologia: Documento in Post-print
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 560.3 kB
Formato Adobe PDF
560.3 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1282594
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact