We consider a system of N point vortices in a bounded domain with null total circulation, whose statistics are given by the canonical Gibbs ensemble at inverse temperature β≥0. We prove that the space-time fluctuation field around the (constant) mean field limit satisfies when N→∞ a generalized version of two-dimensional Euler dynamics preserving the Gaussian energy-enstrophy ensemble.
Gibbs equilibrium fluctuations of point vortex dynamics
Grotto, Francesco;Romito, Marco
2024-01-01
Abstract
We consider a system of N point vortices in a bounded domain with null total circulation, whose statistics are given by the canonical Gibbs ensemble at inverse temperature β≥0. We prove that the space-time fluctuation field around the (constant) mean field limit satisfies when N→∞ a generalized version of two-dimensional Euler dynamics preserving the Gaussian energy-enstrophy ensemble.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
AAP2095.pdf
non disponibili
Tipologia:
Versione finale editoriale
Licenza:
NON PUBBLICO - accesso privato/ristretto
Dimensione
445.93 kB
Formato
Adobe PDF
|
445.93 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Gibbs_Invariant_Measures_2d_Euler (1).pdf
accesso aperto
Descrizione: post-print
Tipologia:
Documento in Post-print
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
560.3 kB
Formato
Adobe PDF
|
560.3 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.