We devise efficient methods for dynamic inverse problems, where both the quantities of interest and the forward operator (measurement process) may change in time. Our goal is to solve for all the quantities of interest simultaneously. We consider large-scale ill-posed problems made more challenging by their dynamic nature and, possibly, by the limited amount of available data per measurement step. To alleviate these difficulties, we apply a unified class of regularization methods that enforce simultaneous regularization in space and time (such as edge enhancement at each time instant and proximity at consecutive time instants) and achieve this with low computational cost and enhanced accuracy. More precisely, we develop iterative methods based on a majorization-minimization (MM) strategy with quadratic tangent majorant, which allows the resulting least-squares problem with a total variation regularization term to be solved with a generalized Krylov subspace (GKS) method; the regularization parameter can be determined automatically and efficiently at each iteration. Numerical examples from a wide range of applications, such as limited-angle computerized tomography (CT), space-time image deblurring, and photoacoustic tomography (PAT), illustrate the effectiveness of the described approaches.

A COMPUTATIONAL FRAMEWORK FOR EDGE-PRESERVING REGULARIZATION IN DYNAMIC INVERSE PROBLEMS

Gazzola S.;
2023-01-01

Abstract

We devise efficient methods for dynamic inverse problems, where both the quantities of interest and the forward operator (measurement process) may change in time. Our goal is to solve for all the quantities of interest simultaneously. We consider large-scale ill-posed problems made more challenging by their dynamic nature and, possibly, by the limited amount of available data per measurement step. To alleviate these difficulties, we apply a unified class of regularization methods that enforce simultaneous regularization in space and time (such as edge enhancement at each time instant and proximity at consecutive time instants) and achieve this with low computational cost and enhanced accuracy. More precisely, we develop iterative methods based on a majorization-minimization (MM) strategy with quadratic tangent majorant, which allows the resulting least-squares problem with a total variation regularization term to be solved with a generalized Krylov subspace (GKS) method; the regularization parameter can be determined automatically and efficiently at each iteration. Numerical examples from a wide range of applications, such as limited-angle computerized tomography (CT), space-time image deblurring, and photoacoustic tomography (PAT), illustrate the effectiveness of the described approaches.
2023
Pasha, M.; Saibaba, A. K.; Gazzola, S.; Espanol, M. I.; de Sturler, E.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1286489
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 9
social impact