The application of X-ray spectro-microscopy to image changes in the chemical state in application areas such as catalysis, environmental science, or biological samples can be limited by factors such as the speed of measurement, the presence of dilute concentrations, radiation damage, and thermal drift during the measurement. We have adapted a reduced-order model approach, known as the discrete empirical interpolation method, which identifies how to optimally subsample the spectroscopic information, accounting for background variations in the signal, to provide an accurate approximation of an equivalent full spectroscopic measurement from the sampled material. This approach uses readily available prior information to guide and significantly reduce the sampling requirements impacting both the total X-ray dose and the acquisition time. The reduced-order model approach can be adapted more broadly to any spectral or spectro-microscopy measurement where a low-rank approximation can be made from prior information on the possible states of a system, and examples of the approach are presented.

Optimal Sparse Energy Sampling for X-ray Spectro-Microscopy: Reducing the X-ray Dose and Experiment Time Using Model Order Reduction

Gazzola S.;
2024-01-01

Abstract

The application of X-ray spectro-microscopy to image changes in the chemical state in application areas such as catalysis, environmental science, or biological samples can be limited by factors such as the speed of measurement, the presence of dilute concentrations, radiation damage, and thermal drift during the measurement. We have adapted a reduced-order model approach, known as the discrete empirical interpolation method, which identifies how to optimally subsample the spectroscopic information, accounting for background variations in the signal, to provide an accurate approximation of an equivalent full spectroscopic measurement from the sampled material. This approach uses readily available prior information to guide and significantly reduce the sampling requirements impacting both the total X-ray dose and the acquisition time. The reduced-order model approach can be adapted more broadly to any spectral or spectro-microscopy measurement where a low-rank approximation can be made from prior information on the possible states of a system, and examples of the approach are presented.
2024
Quinn, P. D.; Sabate Landman, M.; Davis, T.; Freitag, M.; Gazzola, S.; Dolgov, S.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1286495
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 7
social impact