Full waveform inversion (FWI) is a standard algorithm in seismic imaging. It solves the inverse problem of computing a model of the physical properties of the earth’s subsurface by minimising the misfit between actual measurements of scattered seismic waves and numerical predictions of these, with the latter obtained by solving the (forward) wave equation. The implementation of FWI requires the a priori choice of a number of ‘design parameters’, such as the positions of sensors for the actual measurements and one (or more) regularisation weights. In this paper we describe a novel algorithm for determining these design parameters automatically from a set of training images, using a (supervised) bilevel learning approach. In our algorithm, the upper level objective function measures the quality of the reconstructions of the training images, where the reconstructions are obtained by solving the lower level optimisation problem—in this case FWI. Our algorithm employs (variants of) the BFGS quasi-Newton method to perform the optimisation at each level, and thus requires the repeated solution of the forward problem—here taken to be the Helmholtz equation. This paper focuses on the implementation of the algorithm. The novel contributions are: (i) an adjoint-state method for the efficient computation of the upper-level gradient; (ii) a complexity analysis for the bilevel algorithm, which counts the number of Helmholtz solves needed and shows this number is independent of the number of design parameters optimised; (iii) an effective preconditioning strategy for iteratively solving the linear systems required at each step of the bilevel algorithm; (iv) a smoothed extraction process for point values of the discretised wavefield, necessary for ensuring a smooth upper level objective function. The algorithm also uses an extension to the bilevel setting of classical frequency-continuation strategies, helping avoid convergence to spurious stationary points. The advantage of our algorithm is demonstrated on a problem derived from the standard Marmousi test problem.

Optimising seismic imaging design parameters via bilevel learning

Gazzola S.;
2024-01-01

Abstract

Full waveform inversion (FWI) is a standard algorithm in seismic imaging. It solves the inverse problem of computing a model of the physical properties of the earth’s subsurface by minimising the misfit between actual measurements of scattered seismic waves and numerical predictions of these, with the latter obtained by solving the (forward) wave equation. The implementation of FWI requires the a priori choice of a number of ‘design parameters’, such as the positions of sensors for the actual measurements and one (or more) regularisation weights. In this paper we describe a novel algorithm for determining these design parameters automatically from a set of training images, using a (supervised) bilevel learning approach. In our algorithm, the upper level objective function measures the quality of the reconstructions of the training images, where the reconstructions are obtained by solving the lower level optimisation problem—in this case FWI. Our algorithm employs (variants of) the BFGS quasi-Newton method to perform the optimisation at each level, and thus requires the repeated solution of the forward problem—here taken to be the Helmholtz equation. This paper focuses on the implementation of the algorithm. The novel contributions are: (i) an adjoint-state method for the efficient computation of the upper-level gradient; (ii) a complexity analysis for the bilevel algorithm, which counts the number of Helmholtz solves needed and shows this number is independent of the number of design parameters optimised; (iii) an effective preconditioning strategy for iteratively solving the linear systems required at each step of the bilevel algorithm; (iv) a smoothed extraction process for point values of the discretised wavefield, necessary for ensuring a smooth upper level objective function. The algorithm also uses an extension to the bilevel setting of classical frequency-continuation strategies, helping avoid convergence to spurious stationary points. The advantage of our algorithm is demonstrated on a problem derived from the standard Marmousi test problem.
2024
Downing, S.; Gazzola, S.; Graham, I. G.; Spence, E. A.
File in questo prodotto:
File Dimensione Formato  
2301.10762v3_1.pdf

embargo fino al 08/10/2025

Tipologia: Documento in Post-print
Licenza: Creative commons
Dimensione 2.34 MB
Formato Adobe PDF
2.34 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Downing_2024_Inverse_Problems_40_115008.pdf

non disponibili

Tipologia: Versione finale editoriale
Licenza: NON PUBBLICO - accesso privato/ristretto
Dimensione 1.45 MB
Formato Adobe PDF
1.45 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1286497
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 0
social impact