We prove that for a homogeneous linear partial differential operator A of order k <= 2 and an integrable map f taking values in the essential range of that operator, there exists a function u of special bounded variation satisfying Au(x) = f (x) almost everywhere.This extends a result of G. Alberti for gradients on R-N. In particular, for 0 <= m < N, it is shown that every integrable m-vector field is the absolutely continuous part of the boundary of a normal (m + 1)-current.

A Lebesgue-Lusin property for linear operators of first and second order

Arroyo-Rabasa Adolfo
2023-01-01

Abstract

We prove that for a homogeneous linear partial differential operator A of order k <= 2 and an integrable map f taking values in the essential range of that operator, there exists a function u of special bounded variation satisfying Au(x) = f (x) almost everywhere.This extends a result of G. Alberti for gradients on R-N. In particular, for 0 <= m < N, it is shown that every integrable m-vector field is the absolutely continuous part of the boundary of a normal (m + 1)-current.
2023
ARROYO RABASA, Adolfo
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1289089
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact