Geodynamic models for the Antarctic sector of the active Early Palaeozoic Palaeo-Pacific margin of Gondwana are based on the nature and age of the deep crust of the Robertson Bay terrane, the outermost lithotectonic unit of the margin. As this crustal block is covered with thick turbidite deposits, the only way to probe the deep crust is through the analysis of granulite xenoliths from Cenozoic scoria cones. Low-K felsic xenoliths yield the oldest (Middle Cambrian) laser-probe U–Pb ages on zircon areas with igneous growth zoning. This finding, along with the positive whole-rock eNd(500Ma), suggests that these felsic rocks derived from a juvenile magma formed during the Early Palaeozoic Ross orogenic cycle. Mafic xenoliths have geochemical-isotopic compositions similar to those of modern primitive island arcs, suggesting the involvement of subducted oceanic crust in their magma genesis and accretion of juvenile crust at the Antarctic margin of Gondwana.

Accretion of juvenile crust at the Early Palaeozoic Antarctic margin of Gondwana: geochemical and geochronological evidence from granulite xenoliths

GEMELLI, MAURIZIO;ROCCHI, SERGIO;
2009-01-01

Abstract

Geodynamic models for the Antarctic sector of the active Early Palaeozoic Palaeo-Pacific margin of Gondwana are based on the nature and age of the deep crust of the Robertson Bay terrane, the outermost lithotectonic unit of the margin. As this crustal block is covered with thick turbidite deposits, the only way to probe the deep crust is through the analysis of granulite xenoliths from Cenozoic scoria cones. Low-K felsic xenoliths yield the oldest (Middle Cambrian) laser-probe U–Pb ages on zircon areas with igneous growth zoning. This finding, along with the positive whole-rock eNd(500Ma), suggests that these felsic rocks derived from a juvenile magma formed during the Early Palaeozoic Ross orogenic cycle. Mafic xenoliths have geochemical-isotopic compositions similar to those of modern primitive island arcs, suggesting the involvement of subducted oceanic crust in their magma genesis and accretion of juvenile crust at the Antarctic margin of Gondwana.
2009
Gemelli, Maurizio; Rocchi, Sergio; DI VINCENZO, G.; Petrelli, M.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/129058
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 12
  • ???jsp.display-item.citation.isi??? 11
social impact