Inspired by a very recent work of A. Crossed D signurić, S. Jevcrossed d signenić and N. Stopar, we introduce a new definition of zero-divisor graphs attached to rings that includes all of the classical definitions already known in the literature. We provide an interpretation of such graphs by means of a functor that we call zero-divisor functor and which is associated with a family of special equivalence relations fixed beforehand. We thus recover and generalize many known results for zero-divisor graphs and provide a framework which might be useful for further investigations on this topic.

Zero-divisor graphs and zero-divisor functors

Enrico Sbarra;Maurizio Zanardo
2024-01-01

Abstract

Inspired by a very recent work of A. Crossed D signurić, S. Jevcrossed d signenić and N. Stopar, we introduce a new definition of zero-divisor graphs attached to rings that includes all of the classical definitions already known in the literature. We provide an interpretation of such graphs by means of a functor that we call zero-divisor functor and which is associated with a family of special equivalence relations fixed beforehand. We thus recover and generalize many known results for zero-divisor graphs and provide a framework which might be useful for further investigations on this topic.
2024
Sbarra, Enrico; Zanardo, Maurizio
File in questo prodotto:
File Dimensione Formato  
S0219498824501998.pdf

non disponibili

Tipologia: Versione finale editoriale
Licenza: NON PUBBLICO - accesso privato/ristretto
Dimensione 933.23 kB
Formato Adobe PDF
933.23 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
zdgzdf.pdf

accesso aperto

Tipologia: Documento in Post-print
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 457.73 kB
Formato Adobe PDF
457.73 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1291768
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 0
social impact