Despite the rapid advancement of generative Large Language Models (LLMs), there is still limited understanding of their potential impacts on engineering design (ED). This study fills this gap by collecting the tasks LLMs can perform within ED, using a Natural Language Processing analysis of 15,355 ED research papers. The results lead to a framework of LLM tasks in design, classifying them for different functions of LLMs and ED phases. Our findings illuminate the opportunities and risks of using LLMs for design, offering a foundation for future research and application in this domain.

Generative large language models in engineering design: opportunities and challenges

Chiarello, Filippo
Primo
;
Barandoni, Simone;Fantoni, Gualtiero
2024-01-01

Abstract

Despite the rapid advancement of generative Large Language Models (LLMs), there is still limited understanding of their potential impacts on engineering design (ED). This study fills this gap by collecting the tasks LLMs can perform within ED, using a Natural Language Processing analysis of 15,355 ED research papers. The results lead to a framework of LLM tasks in design, classifying them for different functions of LLMs and ED phases. Our findings illuminate the opportunities and risks of using LLMs for design, offering a foundation for future research and application in this domain.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1292388
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact