In this paper we prove the uniform-in-time $L^2$ convergence for the Fourier-Galerkin approximation to Yudovich solutions of the $2D$ Euler equations. Precisely, we show that both the approximating velocity and the approximating vorticity converge strongly in $C(L^2)$. Moreover, for the convergence of the velocity we provide a rate fo convergence. The proofs are based on a relative entropy approach and the Osgood's lemma.

Fourier-Galerkin approximation of the 2D Euler equations with bounded vorticity

Luigi C. Berselli
;
Stefano Spirito
2024-01-01

Abstract

In this paper we prove the uniform-in-time $L^2$ convergence for the Fourier-Galerkin approximation to Yudovich solutions of the $2D$ Euler equations. Precisely, we show that both the approximating velocity and the approximating vorticity converge strongly in $C(L^2)$. Moreover, for the convergence of the velocity we provide a rate fo convergence. The proofs are based on a relative entropy approach and the Osgood's lemma.
2024
Berselli, Luigi C.; Spirito, Stefano
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1297729
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact