Microplastics (MPs) are an emerging environmental issue due to their accumulation in ecosystems and living organisms. Increasing evidence shows that MPs impact vascular function, with recent studies finding MPs in atheromas linked to cardiovascular events. Since vascular smooth muscle cells (VSMCs) are crucial to maintaining vascular function, this study examined how MPs activate VSMCs, leading to cardiovascular diseases like atherosclerosis and vascular calcification. The study used polyethylene (PE) and polystyrene (PS), common in food packaging, as “virgin” or photo-degraded to simulate environmental conditions. VSMC viability, apoptosis, cytotoxicity, inflammation, and activation markers were evaluated. PE and PS affected VSMC viability, induced apoptosis, and triggered pathological changes such as altered migration and proliferation. Key markers like RUNX-2 and galectin-3, which regulate cardiovascular pathology, were activated, alongside the inflammasome complex. In conclusion, MPs can induce harmful activation of VSMCs, posing potential health risks through inflammation, cell damage, and phenotypic changes. Understanding these toxic mechanisms may reveal critical pathways for intervention and prevention

Virgin and photo-degraded microplastics induce the activation of vascular smooth muscle cells

Antonella Cecchettini
Investigation
;
Elisa Ceccherini
Writing – Review & Editing
;
Ilaria Gisone
Writing – Review & Editing
;
Chiara Ippolito
Writing – Review & Editing
;
Valter Castelvetro
Writing – Review & Editing
;
Tommaso Lomonaco
Writing – Review & Editing
;
Federico Vozzi
Supervision
2025-01-01

Abstract

Microplastics (MPs) are an emerging environmental issue due to their accumulation in ecosystems and living organisms. Increasing evidence shows that MPs impact vascular function, with recent studies finding MPs in atheromas linked to cardiovascular events. Since vascular smooth muscle cells (VSMCs) are crucial to maintaining vascular function, this study examined how MPs activate VSMCs, leading to cardiovascular diseases like atherosclerosis and vascular calcification. The study used polyethylene (PE) and polystyrene (PS), common in food packaging, as “virgin” or photo-degraded to simulate environmental conditions. VSMC viability, apoptosis, cytotoxicity, inflammation, and activation markers were evaluated. PE and PS affected VSMC viability, induced apoptosis, and triggered pathological changes such as altered migration and proliferation. Key markers like RUNX-2 and galectin-3, which regulate cardiovascular pathology, were activated, alongside the inflammasome complex. In conclusion, MPs can induce harmful activation of VSMCs, posing potential health risks through inflammation, cell damage, and phenotypic changes. Understanding these toxic mechanisms may reveal critical pathways for intervention and prevention
2025
Persiani, Elisa; Cecchettini, Antonella; Amato, Sofia; Ceccherini, Elisa; Gisone, Ilaria; Ippolito, Chiara; Castelvetro, Valter; Lomonaco, Tommaso; Vo...espandi
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1299907
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact