The main goal of the paper is to find the absolute maximum of the width of the separatrix chaotic layer as function of the frequency of the time-periodic perturbation of a one-dimensional Hamiltonian system possessing a separatrix, which is one of the major unsolved problems in the theory of separatrix chaos. For a given small amplitude of the perturbation, the width is shown to possess sharp peaks in the range from logarithmically small to moderate frequencies. These peaks are universal, being the consequence of the involvement of the nonlinear resonance dynamics into the separatrix chaotic motion. Developing further the approach introduced in the recent paper by Soskin [Phys. Rev. E 77, 036221 (2008)], we derive leading-order asymptotic expressions for the shape of the low-frequency peaks. The maxima of the peaks, including in particular the absolute maximum of the width, are proportional to the perturbation amplitude times either a logarithmically large factor or a numerical, still typically large, factor, depending on the type of system. Thus, our theory predicts that the maximal width of the chaotic layer may be much larger than that predicted by former theories. The theory is verified in simulations. An application to the facilitation of global chaos onset is discussed.

Maximal width of the separatrix chaotic layer

MANNELLA, RICCARDO
2009-01-01

Abstract

The main goal of the paper is to find the absolute maximum of the width of the separatrix chaotic layer as function of the frequency of the time-periodic perturbation of a one-dimensional Hamiltonian system possessing a separatrix, which is one of the major unsolved problems in the theory of separatrix chaos. For a given small amplitude of the perturbation, the width is shown to possess sharp peaks in the range from logarithmically small to moderate frequencies. These peaks are universal, being the consequence of the involvement of the nonlinear resonance dynamics into the separatrix chaotic motion. Developing further the approach introduced in the recent paper by Soskin [Phys. Rev. E 77, 036221 (2008)], we derive leading-order asymptotic expressions for the shape of the low-frequency peaks. The maxima of the peaks, including in particular the absolute maximum of the width, are proportional to the perturbation amplitude times either a logarithmically large factor or a numerical, still typically large, factor, depending on the type of system. Thus, our theory predicts that the maximal width of the chaotic layer may be much larger than that predicted by former theories. The theory is verified in simulations. An application to the facilitation of global chaos onset is discussed.
2009
Soskin, S. M.; Mannella, Riccardo
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/130092
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 9
social impact