In this article we study functionals of the type considered in [36], i.e. J(v):=∫B1(A(x,u)|∇u|2+f(x,u)u+Q(x)λ(u))dx here A(x,u)=A+(x)χ{u>0}+A−(x)χ{u<0}, f(x,u)=f+(x)χ{u>0}+f−(x)χ{u<0} and λ(x,u)=λ+(x)χ{u>0}+λ−(x)χ{u≤0}. We prove the optimal C0,1javax.xml.bind.JAXBElement@7bf0e485 regularity of minimizers of the functional indicated above (with precise estimates) when the coefficients A± are continuous functions and μ≤A±≤[Formula presented] for some 0<μ<1, with f∈LN(B1) and Q bounded. We do this by presenting a new compactness argument and approximation theory similar to the one developed by L. Caffarelli in [9] to treat the regularity theory for solutions to fully nonlinear PDEs. Moreover, we introduce the Ta,b operator that allows one to transfer minimizers from the transmission problems to the Alt-Caffarelli-Friedman type functionals, in small scales, allowing this way the study of the regularity theory of minimizers of Bernoulli type free transmission problems.

Optimal regularity for variational solutions of free transmission problems

Shrivastava, Harish
2023-01-01

Abstract

In this article we study functionals of the type considered in [36], i.e. J(v):=∫B1(A(x,u)|∇u|2+f(x,u)u+Q(x)λ(u))dx here A(x,u)=A+(x)χ{u>0}+A−(x)χ{u<0}, f(x,u)=f+(x)χ{u>0}+f−(x)χ{u<0} and λ(x,u)=λ+(x)χ{u>0}+λ−(x)χ{u≤0}. We prove the optimal C0,1javax.xml.bind.JAXBElement@7bf0e485 regularity of minimizers of the functional indicated above (with precise estimates) when the coefficients A± are continuous functions and μ≤A±≤[Formula presented] for some 0<μ<1, with f∈LN(B1) and Q bounded. We do this by presenting a new compactness argument and approximation theory similar to the one developed by L. Caffarelli in [9] to treat the regularity theory for solutions to fully nonlinear PDEs. Moreover, we introduce the Ta,b operator that allows one to transfer minimizers from the transmission problems to the Alt-Caffarelli-Friedman type functionals, in small scales, allowing this way the study of the regularity theory of minimizers of Bernoulli type free transmission problems.
2023
Moreira, Diego; Shrivastava, Harish
File in questo prodotto:
File Dimensione Formato  
Harish-Shrivastava.pdf

non disponibili

Tipologia: Versione finale editoriale
Licenza: NON PUBBLICO - accesso privato/ristretto
Dimensione 756.39 kB
Formato Adobe PDF
756.39 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Harish-postprint.pdf

accesso aperto

Tipologia: Documento in Post-print
Licenza: Creative commons
Dimensione 555.13 kB
Formato Adobe PDF
555.13 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1302527
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact