This letter presents a novel framework for continuous user authentication of mobile devices based on gait analysis, exploiting inertial sensors and Recurrent Neural Network for deep-learning based classification. The proposed framework handles all the continuous authentication stages, starting from data collection to data preprocessing, classification, and policy enforcement. The letter will emphasize the data analysis aspects, discussing the methodologies used to improve the quality of classification, including data augmentation and a sliding window interval approach for improved training. Furthermore, will be discussed the enforcement, which is based on the Usage Control paradigm for continuous policy enforcement. A set of real experiments will demonstrate the effectiveness and efficiency of the proposed framework.

Using recurrent neural networks for continuous authentication through gait analysis

Giorgi G.;Saracino A.;Martinelli F.
2021-01-01

Abstract

This letter presents a novel framework for continuous user authentication of mobile devices based on gait analysis, exploiting inertial sensors and Recurrent Neural Network for deep-learning based classification. The proposed framework handles all the continuous authentication stages, starting from data collection to data preprocessing, classification, and policy enforcement. The letter will emphasize the data analysis aspects, discussing the methodologies used to improve the quality of classification, including data augmentation and a sliding window interval approach for improved training. Furthermore, will be discussed the enforcement, which is based on the Usage Control paradigm for continuous policy enforcement. A set of real experiments will demonstrate the effectiveness and efficiency of the proposed framework.
2021
Giorgi, G.; Saracino, A.; Martinelli, F.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1303107
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 47
  • ???jsp.display-item.citation.isi??? 40
social impact