We prove (Thm. 1.1) that if $e_0>\ldots >e_r>0$ are coprime integers, then the Newton functions $X_1^{e_i}+\ldots +X_r^{e_i}$, $i=0,\ldots ,r$, generate over $\Q$ the field of symmetric rational functions in $X_1,\ldots ,X_r$. This generalizes a previous result of us for $r=2$. This extension requires new methods, including: (i) a study of irreducibility and Galois-theoretic properties of Schur polynomials (Thm. 3.1), and (ii) the study of the dimension of the varieties obtained by intersecting Fermat hypersurfaces (Thm. 4.1). We shall also observe how these results have implications to the study of zeros of linear recurrences over function fields; in particular, we give (Thm. 4.2) a complete classification of the zeros of recurrences of order four with constant coefficients over a function field of dimension $1$.

Newton Functions Generating Symmetric Fields and Irreducibility of Schur Polynomials

DVORNICICH, ROBERTO;
2009-01-01

Abstract

We prove (Thm. 1.1) that if $e_0>\ldots >e_r>0$ are coprime integers, then the Newton functions $X_1^{e_i}+\ldots +X_r^{e_i}$, $i=0,\ldots ,r$, generate over $\Q$ the field of symmetric rational functions in $X_1,\ldots ,X_r$. This generalizes a previous result of us for $r=2$. This extension requires new methods, including: (i) a study of irreducibility and Galois-theoretic properties of Schur polynomials (Thm. 3.1), and (ii) the study of the dimension of the varieties obtained by intersecting Fermat hypersurfaces (Thm. 4.1). We shall also observe how these results have implications to the study of zeros of linear recurrences over function fields; in particular, we give (Thm. 4.2) a complete classification of the zeros of recurrences of order four with constant coefficients over a function field of dimension $1$.
2009
Dvornicich, Roberto; Zannier, U.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/130881
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 7
social impact