To achieve the decarbonisation goal by 2050, nuclear energy can be a useful element for the future energy mix, complementing intermittent renewable sources. Additionally, heat from the core can be used for cogeneration, aiding the decarbonisation of several energy sectors. In this context, Small Modular Reactors (SMRs) are being studied when introduced in Nuclear–Renewable Hybrid Energy Systems for cogeneration applications. However, nuclear cogeneration with SMRs is still an emerging area of study, requiring careful considerations regarding technical, safety, and economic aspects. European research initiatives, such as the TANDEM project, are exploring the integration of light–water SMRs into hybrid systems. This paper investigates the impact of cogeneration transients on the primary system of an SMR using a novel coupling approach. For this scope, the thermal–hydraulic system code CATHARE 3 and the dynamic modelling language MODELICA are adopted. Three transient scenarios were analysed: cogeneration transitions, core power variations, and thermal load rejection. The results achieved provide insights about the robustness of the numerical coupling and the primary system response to cogeneration-induced transients. As a matter of fact, the analysis shows that the reactor system is mildly influenced by cogeneration changes, and the findings suggest future improvements for both the coupling methodology and modelling assumptions.
Numerical Assessment of Nuclear Cogeneration Transients with SMRs Using CATHARE 3–MODELICA Coupling
Alessandro De Angelis
Primo
Formal Analysis
;Walter Ambrosini
Ultimo
Supervision
2025-01-01
Abstract
To achieve the decarbonisation goal by 2050, nuclear energy can be a useful element for the future energy mix, complementing intermittent renewable sources. Additionally, heat from the core can be used for cogeneration, aiding the decarbonisation of several energy sectors. In this context, Small Modular Reactors (SMRs) are being studied when introduced in Nuclear–Renewable Hybrid Energy Systems for cogeneration applications. However, nuclear cogeneration with SMRs is still an emerging area of study, requiring careful considerations regarding technical, safety, and economic aspects. European research initiatives, such as the TANDEM project, are exploring the integration of light–water SMRs into hybrid systems. This paper investigates the impact of cogeneration transients on the primary system of an SMR using a novel coupling approach. For this scope, the thermal–hydraulic system code CATHARE 3 and the dynamic modelling language MODELICA are adopted. Three transient scenarios were analysed: cogeneration transitions, core power variations, and thermal load rejection. The results achieved provide insights about the robustness of the numerical coupling and the primary system response to cogeneration-induced transients. As a matter of fact, the analysis shows that the reactor system is mildly influenced by cogeneration changes, and the findings suggest future improvements for both the coupling methodology and modelling assumptions.| File | Dimensione | Formato | |
|---|---|---|---|
|
energies-18-02539.pdf
accesso aperto
Tipologia:
Versione finale editoriale
Licenza:
Creative commons
Dimensione
10.21 MB
Formato
Adobe PDF
|
10.21 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


