We provide an explicit description of the recurrent configurations of the sandpile model on a family of graphs G^μ,ν, which we call clique-independent graphs, indexed by two compositions μ and ν. Moreover, we define a delay statistic on these configurations, and we show that, together with the usual level statistic, it can be used to provide a new combinatorial interpretation of the celebrated shuffle theorem of Carlsson and Mellit. More precisely, we will see how to interpret the polynomials ⟨∇en,eμhν⟩ in terms of these configurations.

Shuffle Theorems and Sandpiles

D'Adderio M.;Iraci A.;Vanden Wyngaerd A.
2025-01-01

Abstract

We provide an explicit description of the recurrent configurations of the sandpile model on a family of graphs G^μ,ν, which we call clique-independent graphs, indexed by two compositions μ and ν. Moreover, we define a delay statistic on these configurations, and we show that, together with the usual level statistic, it can be used to provide a new combinatorial interpretation of the celebrated shuffle theorem of Carlsson and Mellit. More precisely, we will see how to interpret the polynomials ⟨∇en,eμhν⟩ in terms of these configurations.
2025
D'Adderio, M.; Dukes, M.; Iraci, A.; Lazar, A.; Le Borgne, Y.; Vanden Wyngaerd, A.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1312727
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact