We give a new construction of Lascoux–Schützenberger's charge statistic in type A which is motivated by the geometric Satake equivalence. We obtain a new formula for the charge statistic in terms of modified crystal operators and an independent proof of this formula which does not rely on tableaux combinatorics.

The charge statistic in type A via the affine Grassmannian

Patimo, Leonardo
2025-01-01

Abstract

We give a new construction of Lascoux–Schützenberger's charge statistic in type A which is motivated by the geometric Satake equivalence. We obtain a new formula for the charge statistic in terms of modified crystal operators and an independent proof of this formula which does not rely on tableaux combinatorics.
2025
Patimo, Leonardo
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1314027
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? ND
social impact