Let M(A) be the complement in C2 of a complexified line arrangement. We provide compact formulas for a Morse complex which computes the (co)homology of M(A) with coefficients in an abelian local system. This refines and simplifies, in the two-dimensional case, a general construction appeared in [M. Salvetti, S. Settepanella, Combinatorial Morse theory and minimality of hyperplane arrangements, Geom. Topol. 11 (2007) 1733–1766], giving also a direct geometrical interpretation.

The Morse complex of a line arrangement

GAIFFI, GIOVANNI;SALVETTI, MARIO
2009-01-01

Abstract

Let M(A) be the complement in C2 of a complexified line arrangement. We provide compact formulas for a Morse complex which computes the (co)homology of M(A) with coefficients in an abelian local system. This refines and simplifies, in the two-dimensional case, a general construction appeared in [M. Salvetti, S. Settepanella, Combinatorial Morse theory and minimality of hyperplane arrangements, Geom. Topol. 11 (2007) 1733–1766], giving also a direct geometrical interpretation.
2009
Gaiffi, Giovanni; Salvetti, Mario
File in questo prodotto:
File Dimensione Formato  
JAlggaiffi.pdf

non disponibili

Tipologia: Versione finale editoriale
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 337.48 kB
Formato Adobe PDF
337.48 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/131445
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 15
social impact