The immune system is alerted for virally infected cells in the body by the antigen presentation pathway, which is in turn mediated by the major histocompatibility complex (MHC) class I and II molecules. Cancer cells overcome immune evasion as a major hallmark by downregulation of the antigen presentation pathway. Therefore, the present study aimed to explore the effect of genetic variants in genes involved in MHC class I and II pathways in patients treated with first-line chemotherapy in combination with targeted antibodies in metastatic colorectal cancer (mCRC) patients. Genomic DNA from the blood samples of 775 patients enrolled in three independent, randomized, first-line trials, namely TRIBE (FOLFIRI-bevacizumab, N = 215), FIRE-3 (FOLFIRI-bevacizumab, N = 107; FOLFIRI-cetuximab, N = 129), and MAVERICC (FOLFIRI-bevacizumab, N = 163; FOLFOX6-bevacizumab, N = 161), was genotyped through OncoArray, a custom array manufactured by Illumina including approximately 530K SNP markers. The impact on the outcome of 40 selected SNPs in 22 genes of MHC class I and II pathways was analyzed. We identified several SNPs in multiple genes associated with targeted treatment benefits across different treatment arms in our study population (p < 0.05). Treatment-SNP interaction analyses confirmed a significant treatment interaction with the targeted agents (bevacizumab vs. cetuximab) and the chemotherapy backbone (FOLFIRI vs. FOLFOX) in certain selected SNPs. Our results highlight a potential role for MHC SNPs as prognostic and predictive biomarkers for first-line treatment in mCRC, with differential effects based on the biologic agent and chemotherapy backbone. These biomarkers, when further validated, may contribute to personalized treatment strategies for mCRC patients.
Genetic Polymorphisms in MHC Classes I and II Predict Outcomes in Metastatic Colorectal Cancer
Cremolini, Chiara;
2025-01-01
Abstract
The immune system is alerted for virally infected cells in the body by the antigen presentation pathway, which is in turn mediated by the major histocompatibility complex (MHC) class I and II molecules. Cancer cells overcome immune evasion as a major hallmark by downregulation of the antigen presentation pathway. Therefore, the present study aimed to explore the effect of genetic variants in genes involved in MHC class I and II pathways in patients treated with first-line chemotherapy in combination with targeted antibodies in metastatic colorectal cancer (mCRC) patients. Genomic DNA from the blood samples of 775 patients enrolled in three independent, randomized, first-line trials, namely TRIBE (FOLFIRI-bevacizumab, N = 215), FIRE-3 (FOLFIRI-bevacizumab, N = 107; FOLFIRI-cetuximab, N = 129), and MAVERICC (FOLFIRI-bevacizumab, N = 163; FOLFOX6-bevacizumab, N = 161), was genotyped through OncoArray, a custom array manufactured by Illumina including approximately 530K SNP markers. The impact on the outcome of 40 selected SNPs in 22 genes of MHC class I and II pathways was analyzed. We identified several SNPs in multiple genes associated with targeted treatment benefits across different treatment arms in our study population (p < 0.05). Treatment-SNP interaction analyses confirmed a significant treatment interaction with the targeted agents (bevacizumab vs. cetuximab) and the chemotherapy backbone (FOLFIRI vs. FOLFOX) in certain selected SNPs. Our results highlight a potential role for MHC SNPs as prognostic and predictive biomarkers for first-line treatment in mCRC, with differential effects based on the biologic agent and chemotherapy backbone. These biomarkers, when further validated, may contribute to personalized treatment strategies for mCRC patients.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


