In this work, we investigate various approaches that use learning from training data to solve inverse problems, following a bi-level learning approach. We consider a general framework for optimal inversion design, where training data can be used to learn optimal regularization parameters, data fidelity terms, and regularizers, thereby resulting in superior variational regularization methods. In particular, we describe methods to learn optimal p and q norms for Lp − Lq regularization and methods to learn optimal parameters for regularization matrices defined by covariance kernels. We exploit efficient algorithms based on Krylov projection methods for solving the regularized problems, both at training and validation stages, making these methods well-suited for large-scale problems. Our experiments show that the learned regularization methods perform well even when there is some inexactness in the forward operator, resulting in a mixture of model and measurement error.

Efficient learning methods for large-scale optimal inversion design

Silvia Gazzola;
2024-01-01

Abstract

In this work, we investigate various approaches that use learning from training data to solve inverse problems, following a bi-level learning approach. We consider a general framework for optimal inversion design, where training data can be used to learn optimal regularization parameters, data fidelity terms, and regularizers, thereby resulting in superior variational regularization methods. In particular, we describe methods to learn optimal p and q norms for Lp − Lq regularization and methods to learn optimal parameters for regularization matrices defined by covariance kernels. We exploit efficient algorithms based on Krylov projection methods for solving the regularized problems, both at training and validation stages, making these methods well-suited for large-scale problems. Our experiments show that the learned regularization methods perform well even when there is some inexactness in the forward operator, resulting in a mixture of model and measurement error.
2024
Chung, Julianne; Chung, Matthias; Gazzola, Silvia; Pasha, Mirjeta
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1315788
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 5
social impact