Industrial process monitoring can benefit from utilizing historical data, providing insights for decision-making and operational efficiency. This study develops a soft-sensor-based approach leveraging multi-fidelity modeling to correct discrepancies between online sensors and laboratory analyses. A Gaussian process-based strategy is used to predict deviations between high-frequency low-fidelity sensor data and less frequent high-fidelity laboratory measurements. By exploring static and dynamic modeling frameworks, we assess their suitability for capturing process dynamics and addressing time-dependent variability. The multi-fidelity soft sensor noticeably improves predictive accuracy, outperforming high-fidelity and low-fidelity methods. This approach demonstrates applicability across various industrial settings where integrating diverse data sources enhances real-time process control and monitoring, reducing reliance on costly laboratory sampling.
Soft-Sensor-Enhanced Monitoring of an Alkylation Unit via Multi-Fidelity Model Correction
Vaccari, Marco;Capaci, Riccardo Bacci di;Pannocchia, Gabriele;
2025-01-01
Abstract
Industrial process monitoring can benefit from utilizing historical data, providing insights for decision-making and operational efficiency. This study develops a soft-sensor-based approach leveraging multi-fidelity modeling to correct discrepancies between online sensors and laboratory analyses. A Gaussian process-based strategy is used to predict deviations between high-frequency low-fidelity sensor data and less frequent high-fidelity laboratory measurements. By exploring static and dynamic modeling frameworks, we assess their suitability for capturing process dynamics and addressing time-dependent variability. The multi-fidelity soft sensor noticeably improves predictive accuracy, outperforming high-fidelity and low-fidelity methods. This approach demonstrates applicability across various industrial settings where integrating diverse data sources enhances real-time process control and monitoring, reducing reliance on costly laboratory sampling.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


