We present a bioreactor system which combines a semi permeable membrane that simulates the osmotic nutrients interchange in the small intestine circulation and rhythmic peristaltic movement. This custom-designed presents a semipermeable membrane bioreactor, with peristaltic flow and compression variation that allows adjustment of luminal flow rate. In addition, this system is also capable of achieving the drug distribution in the small intestine model from the apical compartment to the basal compartment by the semipermeable channel. This dynamic bioreactor can mimic the human small intestine with increased accuracy to overcome many of the limitations and accuracy with the previously described in vitro small intestinal models, providing a more representative model of the small intestine.
Design and development of a dual-flow bioreactor mimicking intestinal peristalsis and permeability in epithelial tissue barriers for drug transport assessment
CACOPARDO, Ludovika;COSTA, Joana
2019-01-01
Abstract
We present a bioreactor system which combines a semi permeable membrane that simulates the osmotic nutrients interchange in the small intestine circulation and rhythmic peristaltic movement. This custom-designed presents a semipermeable membrane bioreactor, with peristaltic flow and compression variation that allows adjustment of luminal flow rate. In addition, this system is also capable of achieving the drug distribution in the small intestine model from the apical compartment to the basal compartment by the semipermeable channel. This dynamic bioreactor can mimic the human small intestine with increased accuracy to overcome many of the limitations and accuracy with the previously described in vitro small intestinal models, providing a more representative model of the small intestine.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


