Translating sensory inputs to perceptual decisions relies on building internal representations of features critical for solving complex tasks. Yet, we still lack a mechanistic account of how the brain forms these mental templates of task-relevant features to optimize decision-making. Here, we provide evidence for recurrent inhibition: an experience-dependent plasticity mechanism that refines mental templates by enhancing γ-aminobutyric acid (GABA)–mediated (GABAergic) inhibition and recurrent processing in superficial visual cortex layers. We combine ultrahigh-field (7 T) functional magnetic resonance imaging at submillimeter resolution with magnetic resonance spectroscopy to investigate the fine-scale functional and neurochemical plasticity mechanisms for optimized perceptual decisions. We demonstrate that GABAergic inhibition increases following training on a visual (i.e., fine orientation) discrimination task, enhancing the discriminability of orientation representations in superficial visual cortex layers that are known to support recurrent processing. Modeling functional and neurochemical plasticity interactions reveals that recurrent inhibitory processing optimizes brain computations for perpetual decisions and adaptive behavior.

Recurrent inhibition refines mental templates to optimize perceptual decisions

Steinwurzel C.;
2024-01-01

Abstract

Translating sensory inputs to perceptual decisions relies on building internal representations of features critical for solving complex tasks. Yet, we still lack a mechanistic account of how the brain forms these mental templates of task-relevant features to optimize decision-making. Here, we provide evidence for recurrent inhibition: an experience-dependent plasticity mechanism that refines mental templates by enhancing γ-aminobutyric acid (GABA)–mediated (GABAergic) inhibition and recurrent processing in superficial visual cortex layers. We combine ultrahigh-field (7 T) functional magnetic resonance imaging at submillimeter resolution with magnetic resonance spectroscopy to investigate the fine-scale functional and neurochemical plasticity mechanisms for optimized perceptual decisions. We demonstrate that GABAergic inhibition increases following training on a visual (i.e., fine orientation) discrimination task, enhancing the discriminability of orientation representations in superficial visual cortex layers that are known to support recurrent processing. Modeling functional and neurochemical plasticity interactions reveals that recurrent inhibitory processing optimizes brain computations for perpetual decisions and adaptive behavior.
2024
Jia, K.; Wang, M.; Steinwurzel, C.; Ziminski, J. J.; Xi, Y.; Emir, U.; Kourtzi, Z.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1320029
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 3
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 4
social impact