Nowadays, when battery-powered electric vehicles (EVs) travel along motorways, their drivers decide where to recharge their cars’ batteries with no or scarce information on the occupancy status of the next charging stations. While this may still be acceptable in most countries, due to the limited number of EVs on motorways, long queues may build-up in the coming years with increased electric mobility, unless smart allocation strategies are designed and implemented. For instance, as we shall investigate in this manuscript, a centralised coordination of the charging strategies of individual EVs has the potential to significantly reduce the queuing time at charging stations. In particular, in this paper we explain how the charging problem on motorways can be modelled as an optimisation problem, we propose some strategies based on dynamic optimisation to solve it, and we explain how this may be implemented in practice using a centralised charge manager that exchanges information with the EVs and solves the optimisation problems. Finally, we compare in a realistic scenario the current decentralised recharging strategies with a centralised one, and we show that, under simplifying assumptions, queueing times can be reduced by more than 50%. Such a significant reduction allows one to greatly improve vehicular flows and general journey durations without requiring building new infrastructure. Reducing queuing times has a positive impact on traffic congestion and emissions, and the more geographically balanced energy demand of the proposed methodology mitigates energy consumption peaks.

Optimised Centralised Charging of Electric Vehicles Along Motorways

Ekaterina Dudkina;Claudio Scarpelli
;
Massimo Ceraolo;Emanuele Crisostomi
2025-01-01

Abstract

Nowadays, when battery-powered electric vehicles (EVs) travel along motorways, their drivers decide where to recharge their cars’ batteries with no or scarce information on the occupancy status of the next charging stations. While this may still be acceptable in most countries, due to the limited number of EVs on motorways, long queues may build-up in the coming years with increased electric mobility, unless smart allocation strategies are designed and implemented. For instance, as we shall investigate in this manuscript, a centralised coordination of the charging strategies of individual EVs has the potential to significantly reduce the queuing time at charging stations. In particular, in this paper we explain how the charging problem on motorways can be modelled as an optimisation problem, we propose some strategies based on dynamic optimisation to solve it, and we explain how this may be implemented in practice using a centralised charge manager that exchanges information with the EVs and solves the optimisation problems. Finally, we compare in a realistic scenario the current decentralised recharging strategies with a centralised one, and we show that, under simplifying assumptions, queueing times can be reduced by more than 50%. Such a significant reduction allows one to greatly improve vehicular flows and general journey durations without requiring building new infrastructure. Reducing queuing times has a positive impact on traffic congestion and emissions, and the more geographically balanced energy demand of the proposed methodology mitigates energy consumption peaks.
2025
Dudkina, Ekaterina; Scarpelli, Claudio; Apicella, Valerio; Ceraolo, Massimo; Crisostomi, Emanuele
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1321627
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact