The increasing penetration of electrified vehicles is accelerating the evolution of on-board and off-board charging systems, which must deliver higher efficiency, power density, safety, and bidirectionality under increasingly demanding constraints. This article presents a system-level review of state-of-the-art charging architectures, with a focus on galvanically isolated power conversion stages, wide-bandgap-based switching devices, battery pack design, and real-world implementation trends. The analysis spans the full energy path—from grid interface to battery terminals—highlighting key aspects such as AC/DC front-end topologies (Boost, Totem-Pole, Vienna, T-Type), high-frequency isolated DC/DC converters (LLC, PSFB, DAB), transformer modeling and optimization, and the functional integration of the Battery Management System (BMS). Attention is also given to electrochemical cell characteristics, pack architecture, and their impact on OBC design constraints, including voltage range, ripple sensitivity, and control bandwidth. Commercial solutions are examined across Tier 1–3 suppliers, illustrating how technical enablers such as SiC/GaN semiconductors, planar magnetics, and high-resolution BMS coordination are shaping production-grade OBCs. A system perspective is maintained throughout, emphasizing co-design approaches across hardware, firmware, and vehicle-level integration. The review concludes with a discussion of emerging trends in multi-functional power stages, V2G-enabled interfaces, predictive control, and platform-level convergence, positioning the on-board charger as a key node in the energy and information architecture of future electric vehicles.

System-Level Compact Review of On-Board Charging Technologies for Electrified Vehicles: Architectures, Components, and Industrial Trends

Pierpaolo Dini
Primo
;
Sergio Saponara;
2025-01-01

Abstract

The increasing penetration of electrified vehicles is accelerating the evolution of on-board and off-board charging systems, which must deliver higher efficiency, power density, safety, and bidirectionality under increasingly demanding constraints. This article presents a system-level review of state-of-the-art charging architectures, with a focus on galvanically isolated power conversion stages, wide-bandgap-based switching devices, battery pack design, and real-world implementation trends. The analysis spans the full energy path—from grid interface to battery terminals—highlighting key aspects such as AC/DC front-end topologies (Boost, Totem-Pole, Vienna, T-Type), high-frequency isolated DC/DC converters (LLC, PSFB, DAB), transformer modeling and optimization, and the functional integration of the Battery Management System (BMS). Attention is also given to electrochemical cell characteristics, pack architecture, and their impact on OBC design constraints, including voltage range, ripple sensitivity, and control bandwidth. Commercial solutions are examined across Tier 1–3 suppliers, illustrating how technical enablers such as SiC/GaN semiconductors, planar magnetics, and high-resolution BMS coordination are shaping production-grade OBCs. A system perspective is maintained throughout, emphasizing co-design approaches across hardware, firmware, and vehicle-level integration. The review concludes with a discussion of emerging trends in multi-functional power stages, V2G-enabled interfaces, predictive control, and platform-level convergence, positioning the on-board charger as a key node in the energy and information architecture of future electric vehicles.
2025
Dini, Pierpaolo; Saponara, Sergio; Chakraborty, Sajib; Hegazy, Omar
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1324467
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact