In real-world scenarios, numerous phenomena generate a series of events that occur in continuous time. Point processes provide a natural mathematical framework for modeling these event sequences. In this comprehensive survey, we aim to explore probabilistic models that capture the dynamics of event sequences through temporal processes. We revise the notion of event modeling and provide the mathematical foundations that underpin the existing literature on this topic. To structure our survey effectively, we introduce an ontology that categorizes the existing approaches considering three horizontal axes: modeling, inference and estimation, and application. We conduct a systematic review of the existing approaches, with a particular focus on those leveraging deep learning techniques. Finally, we delve into the practical applications where these proposed techniques can be harnessed to address real-world problems related to event modeling. Additionally, we provide a selection of benchmark datasets that can be employed to validate the approaches for point processes.

Modeling events and interactions through temporal processes: A survey

Minici, Marco;Spinnato, Francesco;Nanni, Mirco;
2025-01-01

Abstract

In real-world scenarios, numerous phenomena generate a series of events that occur in continuous time. Point processes provide a natural mathematical framework for modeling these event sequences. In this comprehensive survey, we aim to explore probabilistic models that capture the dynamics of event sequences through temporal processes. We revise the notion of event modeling and provide the mathematical foundations that underpin the existing literature on this topic. To structure our survey effectively, we introduce an ontology that categorizes the existing approaches considering three horizontal axes: modeling, inference and estimation, and application. We conduct a systematic review of the existing approaches, with a particular focus on those leveraging deep learning techniques. Finally, we delve into the practical applications where these proposed techniques can be harnessed to address real-world problems related to event modeling. Additionally, we provide a selection of benchmark datasets that can be employed to validate the approaches for point processes.
2025
Liguori, Angelica; Caroprese, Luciano; Minici, Marco; Veloso, Bruno; Spinnato, Francesco; Nanni, Mirco; Manco, Giuseppe; Gama, João
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1325617
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact