Extended reality (XR) devices, commonly known as wearables, must handle significant computational loads under tight latency constraints. To meet these demands, they rely on a combination of on-device processing and edge offloading. This letter focuses on offloading strategies for wearables and assesses the impact of offloading decisions over three distinct time scales: instantaneous power consumption, short-term temperature fluctuations, and long-term battery duration. We introduce a comprehensive system model that captures these temporal dynamics, and propose a stochastic and stationary offloading strategy, called TAO (for temperature-aware offloading), designed to minimize the offloading cost while adhering to power, thermal, and energy constraints. Our performance evaluation, leveraging COMSOL models of real-world wearables, confirms that TAO successfully avoids exceeding temperature limits while keeping additional edge offloading to a minimum. These results also highlight how properly accounting for all features of wearables allows fully exploiting edge offloading opportunities.

XR Offloading Across Multiple Time Scales: The Roles of Power, Temperature, and Energy

Catania A.;
2025-01-01

Abstract

Extended reality (XR) devices, commonly known as wearables, must handle significant computational loads under tight latency constraints. To meet these demands, they rely on a combination of on-device processing and edge offloading. This letter focuses on offloading strategies for wearables and assesses the impact of offloading decisions over three distinct time scales: instantaneous power consumption, short-term temperature fluctuations, and long-term battery duration. We introduce a comprehensive system model that captures these temporal dynamics, and propose a stochastic and stationary offloading strategy, called TAO (for temperature-aware offloading), designed to minimize the offloading cost while adhering to power, thermal, and energy constraints. Our performance evaluation, leveraging COMSOL models of real-world wearables, confirms that TAO successfully avoids exceeding temperature limits while keeping additional edge offloading to a minimum. These results also highlight how properly accounting for all features of wearables allows fully exploiting edge offloading opportunities.
2025
Malandrino, F.; Chukhno, O.; Catania, A.; Molinaro, A.; Chiasserini, C. F.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1325707
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact