Climate change and labour shortage are re-shaping farming methods. Agricultural tasks are often hard, tedious and repetitive for operators, and farms struggle to find specialized operators for such works. For this and other reasons (i.e., the increasing costs of agricultural labour) more and more farmers have decided to switch to autonomous (or semi-autonomous) field robots. In the past decade, an increasing number of robots has filled the market of agricultural machines all over the world. These machines can easily cover long and repetitive tasks, while operators can be employed in other jobs inside the farms. This paper reviews the current state-of-the-art of autonomous robots for agricultural operations, dividing them into categories based on main tasks, to analyze their main characteristics and their fields of applications. Seven main tasks were identified: multi-purpose, harvesting, mechanical weeding, pest control and chemical weeding, scouting and monitoring, transplanting and tilling-sowing. Field robots were divided into these categories, and different characteristics were analyzed, such as engine type, traction system, application field, safety sensors, navigation system, country of provenience and presence on the market. The aim of this review is to provide a global view on agricultural platforms developed in the past decade, analyzing their characteristics and providing future perspectives for next robotic platforms. The analysis conducted on 59 field robots, those already available on the market and not, revealed that one fifth of the platforms comes from Asia, and 63% of all of them are powered by electricity (rechargeable batteries, not solar powered) and that numerous platforms base their navigation system on RTK-GPS signal, 28 out of 59, and safety on LiDAR sensor (12 out of 59). This review considered machines of different size, highlighting different possible choices for field operations and tasks. It is difficult to predict market trends as several possibilities exist, like fleets of small robots or bigger size platforms. Future research and policies should focus on improving navigation and safety systems, reducing emissions and improving level of autonomy of robotic platforms.
A Systematic Review of 59 Field Robots for Agricultural Tasks: Applications, Trends, and Future Directions
Fontani, Mattia;Luglio, Sofia Matilde;Gagliardi, Lorenzo;Peruzzi, Andrea;Frasconi, Christian;Raffaelli, Michele;Fontanelli, Marco
2025-01-01
Abstract
Climate change and labour shortage are re-shaping farming methods. Agricultural tasks are often hard, tedious and repetitive for operators, and farms struggle to find specialized operators for such works. For this and other reasons (i.e., the increasing costs of agricultural labour) more and more farmers have decided to switch to autonomous (or semi-autonomous) field robots. In the past decade, an increasing number of robots has filled the market of agricultural machines all over the world. These machines can easily cover long and repetitive tasks, while operators can be employed in other jobs inside the farms. This paper reviews the current state-of-the-art of autonomous robots for agricultural operations, dividing them into categories based on main tasks, to analyze their main characteristics and their fields of applications. Seven main tasks were identified: multi-purpose, harvesting, mechanical weeding, pest control and chemical weeding, scouting and monitoring, transplanting and tilling-sowing. Field robots were divided into these categories, and different characteristics were analyzed, such as engine type, traction system, application field, safety sensors, navigation system, country of provenience and presence on the market. The aim of this review is to provide a global view on agricultural platforms developed in the past decade, analyzing their characteristics and providing future perspectives for next robotic platforms. The analysis conducted on 59 field robots, those already available on the market and not, revealed that one fifth of the platforms comes from Asia, and 63% of all of them are powered by electricity (rechargeable batteries, not solar powered) and that numerous platforms base their navigation system on RTK-GPS signal, 28 out of 59, and safety on LiDAR sensor (12 out of 59). This review considered machines of different size, highlighting different possible choices for field operations and tasks. It is difficult to predict market trends as several possibilities exist, like fleets of small robots or bigger size platforms. Future research and policies should focus on improving navigation and safety systems, reducing emissions and improving level of autonomy of robotic platforms.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


