Electromagnetic induction (EMI) devices have become increasingly popular for their soil bulk properties, soil nutrient status, and use in taking non-invasive soil salinity measurements. However, the high cost of data acquisition (DAQ) systems has been a significant barrier to the widespread adoption of these devices. In this study, we addressed this challenge by developing a cost-effective, easy-to-use, open-source DAQ system, transferable to the end user. This system employs a Raspberry Pi 4 model, paired with various components, to monitor the speed and position of the EM38 (Geonics Ltd, Mississauga, ON, Canada) and compare these with a proprietary CR1000 system. Through our results, we demonstrate that the low-cost DAQ system can successfully extract the analogical signal from the device, which is strongly responsive to the variation in the soil’s physical properties. This cost-effective system is characterized by increased flexibility in software processes and provides performance comparable to the proprietary system in terms of its geospatial data and ECb measurements. This was validated by the strong correlation (R2 = 0.98) observed between the data collected from both systems. With our zoning analysis, performed using the Kriging technique, we revealed not only similar patterns in the ECb data but also similar patterns to the Normalized Difference Vegetation Index (NDVI) map, suggesting that soil physical characteristics contribute to variability in crop vigor. Furthermore, the developed web application enabled real-time data monitoring and visualization. These findings highlight that the open-source DAQ system is a viable, cost-effective alternative for soil property monitoring in precision farming. Future enhancements will focus on integrating additional sensors for plant vigor and soil temperature, as well as refining the web application, supporting zone classification based on the use of multiple parameters.
Development and Validation of a Low-Cost DAQ for the Detection of Soil Bulk Electrical Conductivity and Encoding of Visual Data
Fatma Hamouda;Lorenzo Bonzi;Marco Carrara;Giovanni Rallo
2025-01-01
Abstract
Electromagnetic induction (EMI) devices have become increasingly popular for their soil bulk properties, soil nutrient status, and use in taking non-invasive soil salinity measurements. However, the high cost of data acquisition (DAQ) systems has been a significant barrier to the widespread adoption of these devices. In this study, we addressed this challenge by developing a cost-effective, easy-to-use, open-source DAQ system, transferable to the end user. This system employs a Raspberry Pi 4 model, paired with various components, to monitor the speed and position of the EM38 (Geonics Ltd, Mississauga, ON, Canada) and compare these with a proprietary CR1000 system. Through our results, we demonstrate that the low-cost DAQ system can successfully extract the analogical signal from the device, which is strongly responsive to the variation in the soil’s physical properties. This cost-effective system is characterized by increased flexibility in software processes and provides performance comparable to the proprietary system in terms of its geospatial data and ECb measurements. This was validated by the strong correlation (R2 = 0.98) observed between the data collected from both systems. With our zoning analysis, performed using the Kriging technique, we revealed not only similar patterns in the ECb data but also similar patterns to the Normalized Difference Vegetation Index (NDVI) map, suggesting that soil physical characteristics contribute to variability in crop vigor. Furthermore, the developed web application enabled real-time data monitoring and visualization. These findings highlight that the open-source DAQ system is a viable, cost-effective alternative for soil property monitoring in precision farming. Future enhancements will focus on integrating additional sensors for plant vigor and soil temperature, as well as refining the web application, supporting zone classification based on the use of multiple parameters.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


